
(f::U) lU Ed-"

C=3

S.,... i O .. "

E~0

ti
! , !~ al

60 E~

0-ot

b. -
0r . ()t

wh -r WiE

- Oo

REPORT DOCUMENTATION PAGE Form Approved

I OMB No. 0704-0188

Th•,i reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions. searching existing data sources.
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of

rnorI. including suggestions for reducing the burden, to Department of Defense. Washington Headquarters Services. Directorate for Information Operations and Reports (0704-01881.
f2l"=efferson Davis Highway. Suite 1204. Arlington. VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for faiting to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
06/27/05 Final Technical Report 1 05/01/01-3/31/05

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Framework for Seamless Interoperation of N00014-01-1-0746
Heterogeneous Distributed Software components 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Raje, Rajeev, R., Olson, Andrew, M., Bryant,
Barrett, R., Burt, Carol, C., and Auguston, Mikhail 5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Indiana University REPORT NUMBER

Research and Sponsored Programs TR-CIS-0624-05
620 Union Drive, Room 618
Indianapolis, IN 46202-5167

9•ONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

9. Ralph Wachter
Office of Naval Research, ONR311
Ballston Center Tower One 11. SPONSOR/MONITOR'S REPORT

800 N. Quincy Street, Arlington, VA 22217-5660 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Public Availability (UU) D STATEEM T A

Approved for Public Release
13. SUPPLEMENTARY NOTES VtiSfUIudani Unl imite d

14. ABSTRACT

The UniFrame research was supported under the CIP/SW Program. The vision of this
research is to automate the process of integrating heterogeneous and distributed
systems that conform to specific quality requirements. This research addressed three
key challenges : a) architecture-based interoperability, b) distributed resource
discovery, and c) validation of quality requirements. Principles and prototypical
systems were created to demonstrate the successful completion of the research.

15. SUBJECT TERMS

Component-based software, distributed computing, Quality of Service, Model-driven
architecture.

iCRTCLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON

a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OFaeev R. aePAGES R j e . R j
U U U UU 370 19b. TELEPHONE NUMBER (Include area code)

317-274-5174
Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std Z39.18

0 C 0

0ii•.• 0,. ,-. (U
w i..0 ,-C

I1-limo huh

V (SC ..(5

E

~M

* Final Report

Contract Information

Contract Number NO001 4-01-1-0746

Title of Research A Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components

Principal Investigator Rajeev R. Raje

Organization Indiana University Purdue University Indianapolis

Technical Section

Executive Summary

* This is the final report for the project entitled "A Framework for Seamless Interoperation of
Heterogeneous Distributed Software Components", supported by the Office of Naval Research under the
CIP/SW program, and which was jointly investigated by the Indiana University Purdue University
Indianapolis, The University of Alabama at Birmingham, and New Mexico State University/Naval
Postgraduate School. The objectives, approach, results achieved, publications, presentations, interactions
with other organizations, and educational impact are described in this report. Copies of sample
publications are also included as an appendix.

The vision of this research is to automate the process of integrating heterogeneous and distributed
software components, so as to create distributed systems that conform to specific quality requirements.
The research addressed three key issues while creating a framework, called UniFrame, as a first step
towards achieving the vision of the research. These three issues were: a) architecture-based
interoperability, b) distributed resource discovery, and c) validation of the quality requirements. The
underlying principles for the research are based on model-driven generation, multi-level specification of
components, a proactive and distributed discovery of resources, and formalism based on Two-level
Grammars and Event Grammars. Many different prototypes were created as a proof of concept for this
research and were empirically validated. The results were extensively published in professional forums,
such as journals, conferences, and invited presentations. The results of the research were also
incorporated in the curricula at all the participating organizations and benefited undergraduate as well as
graduate students. The infrastructures at the participating universities were also enhanced by creating
dedicated laboratories for the research. The results achieved during the life of the project have
successfully demonstrated the soundness of the UniFrame principles, thereby, reaffirming the belief that
UniFrame presents a comprehensive approach for constructing distributed component-based systems that

* satisfy quality requirements.

1

* Objectives

The vision of this research is to automate the process of integrating heterogeneous components to create
distributed software systems that conform to quality requirements. As a first step towards accomplishing
this ambitious vision, the objective of this research contract was to create a comprehensive framework,
called UniFrame. that will enable a seamless interoperation of heterogeneous distributed components.

The key research issues, investigated by this project, to achieve the above mentioned objective are:

i) Architecture-based interoperability
ii) Distributed resource discovery
iii) Validation of quality requirements

Each of these research issues requires addressing several challenging topics, which are indicated below.

i) Architecture-based interoperability
a. To investigate the roles of modeling, mapping, and automation in achieving

interoperability between heterogeneous components.
b. To develop principles for designing the necessary tools and implement proof-of-concept

prototypes.
c. To explore the challenges related to model-based standardization in the domain of

heterogeneous distributed components.

ii) Distributed resource discovery
a. To develop a multi-level specification mechanism, based on a meta-model that utilizes

and facilitates the principle of design by multi-level contract.
b. To create an infrastructure for publication and distribution of the software components.
c. To design and experiment with a prototypical system that will provide the hierarchical

discovery and selection mechanisms for locating appropriate distributed components.

iii) Validation of quality requirements
a. To develop a comprehensive vocabulary and associated metrics for the quality

parameters of a system.
b. To investigate the composition and decomposition rules for these quality parameters.
c. To create the necessary formalism for monitoring events related to these quality

parameters.

Approach

The assumptions of the research are: a) distributed system construction is to be achieved by integrating
independently deployed heterogeneous components, and b) automation aids in increasing the quality of
the generated system and requires less development time. The technical approach used in UniFrame is
based on principles of: a) model-driven design and construction, b) distributed discovery using multi-
level specifications, and c) Two-Level and event grammars.

2

Figure 1 indicates the UniFrame process [BC-1, CW-1]j for constructing distributed systems from
geographically distributed heterogeneous software components. The central piece in the UniFrame
process is a comprehensive knowledgebase (KB) that contains detailed descriptions of a) a service-based
architecture (modeled by feature diagrams) for a family of systems for the particular type of application
under consideration, b) rules for matching and selecting distributed components, c) rules for semi-
automatically generating a distributed system from selected components, and d) the rules for the
description, the instrumentation and the measurement of the quality requirements of the generated

system. In the current research effort, it is assumed that this KB is developed by domain experts, such as
various task forces of the Object Management Group (OMG), using the available standards. However,
for the purposes of the prototypical development and experiment, this KB has been handcrafted. Details
of the prototype KB are provided in [DT-4], whereas the architecture and application of the more general
concept are explained in [BC-1, CW-1].

Component

Selected D Component
Components Distributed Resource Deployment Component

1Discovery Quality Measures

Modified
I Query

Que ry
r :Component Developer

System Integrator UniFrame Knowledgebase

Assemble / Standards
System

Yes System Deployment Domain Expert
Quality Validation (End) (Start)

Figure 1: The UniFrame Approach

In the UniFrame process, it is assumed that developers independently create components using a specific
distributed component technology that adhere to the KB standards. In addition to creating, validating, and
deploying the components, they are required to develop a multi-level specification, called a UMM
(Unified Meta-component Model) specification [OR-i, CW-1], for each of their components. This UMM
specification is an enhanced version of the multi-level contract principle advocated in [OR-2]. Each
component has four levels of contract: a) syntax, b) semantics, c) synchronization, and d) Quality of

1 The following scheme is used in indicating citations. These references are divided into: a) Book Chapters (BC), b)
Journal Papers (JP), c) Conference and Workshop Proceedings (CW), d) Standards Documents (SD), e) Dissertation
and Theses (DT), and f) Other References (OR). Each citation contains a prefix, which indicates the corresponding
category (e.g., BC), followed by a number (e.g., BC-1).

3

* Service (QoS). Various mechanisms are utilized to describe these different levels of the contract. For
example, the semantics contract uses pre-, post-conditions and invariants, while the QoS level contract
indicates the appropriate QoS parameters with their metrics and their behavior as a function of the
execution environment. Examples of UMM specifications are available in [BC-1, CW-1. The component
along with it's UMM specification (in XML) is deployed on the network using the underlying
infrastructure provided by the technology that was used to develop the component. Once a component is
deployed, it is available for discovery.

The task of locating a component is carried out by the UniFrame Resource Discovery Service (URDS).
URDS is hierarchical, proactive, interoperable, and decentralized in nature. Its three constituents are: a)
active registries (AR), b) headhunters (HH), and c) Internet component broker (ICB). ARs are the native
registration mechanisms of different distributed component technologies (such as the registry in Java-
RMI) except for the fact that they are proactive in nature, i.e., they are always listening for
communications from HHs. HHs are responsible for discovering components that are deployed on a
network. Once a HH discovers components, it registers them in its local store, called meta-repository
(MR). HHs are responsible for matching requests for components with the available components and also
propagating these requests to other HHs. The ICB is a collection of various services such as the
authentication, federation, and query processing. Comprehensive details of URDS are available in [DT-1,
CW-15].

The discovery process is initiated by a request, or query, for a distributed system from a system integrator
with the intent of constructing it from components deployed on a network. This query indicates the
nature and the features of the desired distributed system. The features include a combination of a variety. of QoS parameters (such as turn-around time < 200 ms) and a type of the desired system. The query
manager (a part of the ICB) uses the KB to determine a system design instance out of the families of
systems stored in the KB that is appropriate for the query. Once that instance is identified, the query is
decomposed into sub-queries, each indicating specific types of components, along with their QoS
features, that are needed to construct the desired distributed system. This decomposition process uses the
rules that are described in the KB. The details of this process are described in [DT-4, DT-5, CW-23].
These sub-queries are supplied to the URDS for locating the components that match their criteria
appropriately. Once components are located, they are presented back to the system integrator for
selecting, in case there is more than one candidate for a given sub-query.

Once the system integrator selects a complete set of components, the system generator described in [DT-
4, CW-24] constructs a distributed system from them. The construction process does utilize the
generation rules, which are described in the KB, that express the architecture of the system design. In
addition, the construction process instruments the necessary QoS-related code into the integrated system.
The generation process uses the principles of Two-level Grammar (TLG) [CW-16], and the
instrumentation process is based on the concepts of event grammars [OR-3]. Once the system is
integrated, composition rules, which are part of the KB, are used to make a prediction about the QoS of
the entire system based on the individual QoS values. Then, the prediction is validated against the actual
values obtained from collecting the event traces (based on the event grammars) resulting from
experimental testing of the system. The details of composition rules are in [DT-5].

It is possible to perform the discovery, generation, integration and validation in an iterative manner. For
example, the discovery process may yield no satisfactory components, or the integrated system may not
meet the desired QoS requirements. In such scenarios, the query could be reissued, with possible
modifications, and reprocessed by the URDS. Such an iterative process provides the necessary flexibility
of an incremental design. This is discussed further in [BC-1, BC-3].

4

* The salient features and scientific merits of the UniFrame approach are that it:

i) provides a unified approach through the UniFrame Process (described briefly above).
ii) uses the principles of model-driven (KB-based) automation for the system construction.
iii) allows interoperation among heterogeneous software components meeting QoS requirements.
iv) uses a meta-model-based approach for multi-level specification of components.
v) follows a proactive advertisement and discovery of components.
vi) proposes a Quality of Service Framework that contains a QoS catalog and a unifying system

monitoring technique.

The UniFrame research offers the following benefits to the CIP/SW initiative:

i) The UniFrame process, supported by appropriate tools, will enable a semi-automatic
distributed system assembly from heterogeneous and distributed software components.

ii) The standards-based technology will be enhanced to achieve a seamless integration of the
heterogeneous components.

iii) A semi-automated system assembly with integrated validation metrics will improve the
system quality.

The UniFrame research project has supported students at all levels, from the undergraduate to MS and
PhD, at the participating institutes, thereby, enriching their educational experience. In addition, various
research topics that are being investigated have been incorporated into the curricula at all the
participating institutions. Specialized computing laboratories have been created as a result of the
UniFrame research.

Accomplishments

A brief summary of the tasks accomplished during the life of the UniFrame research (2001-2005) is
presented below. It is classified under the three key challenges that UniFrame research is addressing.
Detailed technical aspects of the accomplishments are published in many papers, a listing of which is
provided under the publications section of the report and a few representative papers are attached as an
appendix.

i) Architectural-based interoperability

The challenge of architecture-based interoperability was tackled using a multi-pronged
approach. First, a formal process, based on the UniFrame principles, was designed [BC-1,
BC-3, DT-2]. Second, the contents and the formalization of the KB were carried out [DT-4,
DT-5, DT-24, CW-33], and associated model-transformation techniques were explored [JP-6,
CW-43]. Third, principles, based on the applicability of the Two-level grammar, for the
generation of the glue code were identified [JP-4, CW-13, CW-16, CW-17, CW-22, CW-25,
CW-29, CW-40, CW-41, CW-44, CW-45, DT-23, DT-24], and prototypes were created
which generated glues and hence, inter-operable distributed systems [DT-4, DT-10, DT-23,
DT-24, CW-30]. Finally, preliminary explorations about the applicability of the UniFrame
approach to other domains, such as Grid Computing, were carried out [DT-21, JP-7, CW-46].
The significant results achieved while addressing this challenge are described below:

5

a. The activity of formulating the requirements for a family of computing systems in a
particular domain was studied as part of the effort to develop the knowledgebase. A
formal, machine processable language was developed for expressing the domain's
alternatives in terms of feature graphs [DT-2]. This work was extended to
representations of designs of systems in the domain [DT-4, CW-24], A process for
developing component-based systems within the UniFrame context was formalized [BC-
1, BC-3], and a prototype was developed [DT-4]. An example problem was examined to
illustrate the OMG's Model Driven Architecture (MDA) approach to generating platform
specific designs from platform independent models [CW-19]. With this prototype, a
system developer could formulate the requirements for a specific system in the domain
and generate an appropriate, component-based implementation automatically.

b. Because the effort of creating the knowledgebase is so extensive, the domain experts
with this task must have at their disposal adequate representation languages and strong
support tools. A major problem is that feature graphs are an incomplete representation
of the systems within a domain because they represent essentially just alternatives among
the systems. A more complete design representation requires a standard system design
language, such as UML, with an extension for representing the feature variants that
typify a design family. To address this issue, a study was made of a number of such
extensions. However, none was found that is mature enough to have tools with which to
generate the domain representations in an open form satisfactory for use by the
UniFrame development process described above. The closest product found is
proprietary. It is based on the concept of 'archetype patterns', a generalization of design
patterns. It permits the UML-like abstract representation of alternative designs in a
domain, and can generate code in an MDA fashion, given what is called a "cartridge" for
the appropriate language. Existing cartridges do not permit construction at the
component-based level. This survey and analysis, with example applications, are
reported in [DT-16].

c. The integration of the aspect-orientation into generative domain modeling for modeling
component domains was completed. This approach to modeling facilitates component
specification as well as component integration. The approach to modeling Web Services
(WS) for the purpose of integrating components following the web services technology
domain model was specifically investigated [JP-5, CW-35, CW-41, DT-23]. Software
systems can incorporate WS technology in order to be reused and integrated in a
distributed environment across heterogeneous platforms. The following issues were
specifically addressed: 1) the migration of legacy distributed software systems toward
WS applications; 2) the innovation of new infrastructure, and languages in support of
WS application development. The relationships between this type of model and
traditional Entity-Relationship diagrams was also explored [CW-47].

d. The hypothesis that the UniFrame model of components distributed over the network
was an embodiment of the semantic web was further investigated [BC-2]. UniFrame

exists in a semantic web of software components. The natural language foundation of
UniFrame queries may also be used in querying the semantic web [JP-2, DT-7, CW-6,
CW-8, CW-9, CW-18, CW-26, CW-38].

e. Two-Level Grammar (TLG) [CW-5, CW-39] continued to be applied to model the
feature composition in domain models [JP-8, CW-14, CW-37, CW-43]. The foundation

6

* of grammar for this approach appears to offer a number of interesting possibilities for
model-driven development, as detailed in [CW-12, CW-21, CW-28].

f. As the UniFrame process places a strong emphasis on the incorporation of the QoS
parameters during the entire life cycle of distributed component-based systems, it was
necessary to develop a mechanism that allowed the depiction of the QoS parameters
during the design stage. For that purpose, the concept of the collaboration diagram was
extended to incorporate the modeling of QoS parameters during the design phase. Case
studies were carried out to assess the effectiveness of this approach [DT-12]. It
demonstrated that annotated collaboration diagrams are an effective mechanism for
modeling the QoS parameters during the design of distributed systems. Formal
specification methods for QoS were also investigated [JP-3, CW-1 1, CW-36].

g. As indicated earlier, heterogeneity is the main challenge that UniFrame has to address; a
template-based approach was investigated and a prototype was created that allowed an
interoperation between Java-RMI and CORBA components. The effects of different
placements of the generated glue on the performance metrics (such as the turn-around
time) were observed by experimenting with the prototype [DT-10]. Different alternatives
(such as centralized or one-to-one distributed) were selected for the placement of the
glue that is generated using the template approach. It was observed that the distributed
placement on the initiator and responder machines yielded less performance penalty and
thus, is a better choice than the other alternatives, such as the centralized placement.

h. A preliminary exploration about the applicability of UniFrame principles to other
domains was initiated by considering grid computing as a potential target. Grid
computing, due to its inherent distributed, heterogeneous and quality-aware (e.g.,
precision, speedup) properties, represents an ideal target domain. The simplified
structure of the KB for a grid-related application was presented in [DT-21 CW-46, JP-7]
and a few experiments that allowed an interoperability of UniFrame components with
Grid-based components (developed using Globus) were designed and executed. These
preliminary investigations indicate a potential for UniFrame to act as a formal process
for grid-related application development.

ii) Distributed resource discovery

One of the assumptions in the UniFrame research is that a distributed system is realized by
integrating various heterogeneous and independently created components. Thus, the process
of discovering components is not only a pre-requisite for generating a distributed system, but
also a critical task in the UniFrame process. This task of discovery in UniFrame, as indicated
earlier, is performed by the UniFrame Resource Discovery System (URDS). Many different
aspects of URDS were investigated in the research. The highlights of this exploration are:

a. The starting point for the URDS was the design of its architecture. [DT-1, CW-15] This
architecture is hierarchical, proactive, and allows an interoperation across different
component models. An initial prototype was created in [DT-1] using the J2EE and was
experimented with. The results established the validation of the architecture and the
proactive nature of URDS.

b. As a next step, the applicability of the URDS architecture to the .Net component model
was investigated in [DT-6, DT-13]. The prototypes developed in this effort used the

7

UDDI mechanism of the .Net model. [DT-13, CW-31] explored an extensive comparison
between the .Net model and the UniFrame paradigm in general, with a specific focus on
URDS. The principles of URDS were found applicable in the context of the .Net model
as well and this prototype was made to interoperate with the one developed using J2EE
model, thereby, indicating the interoperable nature of the URDS architecture.

c. Investigations indicated in (a) and (b) were carried out on prototypes which were
moderately sized. Thus, to explore the scalability of the URDS, a simulation was created
[DT-21]. This allowed the investigation of different configurations of URDS constituents
and their impact on the performance, measured by the time required for serving a
request. These experiments indicated that the URDS architecture is scalable, which is
attributed to its hierarchical nature.

d. In addition to empirically evaluating the scalability of the URDS architecture,
investigations were carried out to perform selective search techniques while locating
appropriate components. This required designing different query propagation schemes
and studying their effect on the performance (e.g., response time) and the quality of the
components discovered (e.g., precision). Different query propagations were carried out
using the concept of acquaintances [OR-4], which uses the principles of reinforcement
learning [OR-5]. A Headhunter, in addition to searching its local meta-repository,
propagates the incoming query to other headhunters. Thus, the search process is
equivalent to traversing different graphs created due to the selection of acquaintances.
Different techniques such as, random, short-term, long-term, and profile-based, were
designed and used in deciding the acquaintances [DT-19, DT-21, JP-10]. Experiments
were carried out to study the impact of these techniques on different query and
component distributions. It was shown that the long-term and profile-based techniques
performed better in most of the cases.

e. The above mentioned investigations used simple techniques, based on component types
and QoS values, for matching queries with the available component specifications. Such
a matching, although simple, is far from comprehensive. Also, it does not take advantage
of the other levels of the contracts (e.g., semantics, and synchronization) that a UMM
specification employs. Hence, investigations were carried out for multi-level matching
during the discovery process. In [OR-6, OR-7] techniques are described that allow the
matching at the syntax and semantics levels. These are based on the type relations and
predicate logic. These principles acted as the starting point for the investigations of
multi-level matching. These explorations resulted in identifying the formal structure of
the synchronization and QoS contracts and associated matching principles [DT-15, JP-9].
Rules for different types of matching (e.g., exact-match and relaxed-match) were created
and validated by developing a synchronization policy catalog and using the temporal
logic of actions [OR-8]. Different operators were also defined for matching the QoS
level contracts. Such a multi-level matching is more comprehensive than the simple
matching that URDS prototypes were employing. An incorporation of the multi-level
matching is future work that is being currently investigated.

f. During the empirical evaluation of the scalability of URDS, it was realized that the
monitoring and management functions were largely done in a manual manner. Thus, a
GUI-based monitoring and management system for URDS was created [DT-20]. This
system uses the model-view-controller pattern and employs the principles of event-driven
as well as periodic modeling. It provides two views, one for the manager of the URDS

8

and the other for the user of the URDS. Empirical evaluations were carried out to
demonstrate the effectiveness of this system.

g. The incorporation of mobility into the URDS architecture was carefully evaluated and a
design that encompasses mobile headhunters was created. A mobile agent-based version
of URDS (called MURDS) was created and experimented with to show the effectiveness
of the incorporation of the mobility into the URDS architecture [DT- 11].

h. The multi-level contracts make the task of creating the UMM specification for a
component fairly elaborate and increase the complexity during the component
development process. Hence, a UMM-specification editor was developed that assists in
this task [DT-9].

iii) Validation of quality requirements

As indicated earlier, UniFrame emphasizes the quality requirements throughout the
development of the distributed systems. It specially focuses on the QoS features, as these
features are critical in many different application domains, such as distributed real-time
systems. The approach followed to address this challenge was: a) to create a vocabulary of
the QoS parameters and to study the effects of the environment on the QoS parameters, b) to
propose a methodology for incorporating QoS parameters in a model-driven approach, c) to
propose a methodology and associated tools for empirically validating the QoS parameters,
d) to study access control as a QoS parameter, and e) to propose and investigate the
applicability of UniFrame's QoS approach to distributed real-time systems. These are briefly
discussed below.

a. As a first step towards addressing the QoS aspects, a comprehensive QoS catalog was
created [CW-4]. This catalog contains commonly used QoS parameters, along with a
description of their features (such as intent, method of evaluation, etc.). The structure of
the catalog is loosely based on the structure of the design patterns catalog [OR-9]. Thus,
each parameter, in this catalog, is described using a template that is similar to the one
used in the design patterns catalog. Models for measuring the parameters are also
indicated in the catalog and have been experimentally validated for the dynamic
parameters. These parameters are classified based on their nature (e.g., static/dynamic)
and on the application domains that they appear in. This was further enhanced to create a
QoS-based framework for UniFrame [JP-1]. Also, the effects of different factors, such as
the execution environment and usage patterns, on dynamic QoS parameters were also
studied in [DT-3]. This work also acted as a foundation for the QoS composition and
decomposition rules that were studied in [DT-5]. Composition and decomposition rules
for parameters from the catalog were created and empirically validated [DT-5, CW-23].

b. The incorporation of QoS framework (as described in (a)), into OMG's model driven
architecture (MDA) was investigated [CW-7]. Based on this, an approach for
transforming QoS features from the platform independent models to platform specific
models was developed [CW-19]. This work was also discussed with different task forces
of the OMG and also resulted in the corresponding OMG RFPs [SD-1, SD-2].

c. The investigations in (b) were further expanded by specifically focusing on access
control as a QoS parameter. In [CW-32] an approach was presented to unify
authorization models for fine-grain access control. It defines a model-driven method to

9

construct software which meets access control requirements and validates that the
software does in fact have the necessary level of security. This was further studied in
[DT-17, JP-1 1], where the inclusion of access control features in the UMM specification
of components was investigated. Also, this incorporation of the access control in the
multi-level interface was used in the discovery and selection of components. The access
control properties of an ensemble of components, based on the individual access control
features, were predicted. This was based on the principles of logic programming and the
logic of temporal actions.

d. The initial exploration of the applicability of the UniFrame principles to the distributed
real-time and embedded (DRE) systems was started during FY 2003. Since a UniFrame
approach to constructing such systems would necessarily entail many different possible
compositions, techniques based on genetic algorithms and Petri nets to prune this set of
combinations to achieve a better QoS assurance were developed [CW-48, CW-49, CW-
50).

e. Implementation of the first version of visual meta-programming language was completed
[CW-2, CW-3, DT-14]. An original approach to the software monitoring automation
based on precise behavior models and event grammars was developed. This allows an
implementation of different kinds of monitoring, such as assertion checking, profiling,
performance measurement, debugging queries, software visualization, intrusion
detection, and dynamic QoS metrics within a uniform framework [CW-10, CW-20, CW-
27, CW-34, CW-42, CW-51, CW-52, CW-53, DT-8, DT-18].

f. The design of the prototype for an automated test generator for reactive and real time
systems based on attributed event grammars was completed. Efforts to assess the
effectiveness of the tool were started in FY 2003. This approach provides for new tools
for automated test driver generation and system safety assessment [CW-5 1, CW-52, CW-
53, DT-22].

g. The design of a run-time monitoring tool for C/C++ programs based on the Dyninst
instrumentation tool was also created. The exploration with this tool on different test
scenarios was initiated in FY 2003.

h. Also, the feasibility of reactive system prototype verification based on Statechart models
and build-in temporal logic assertion checking was explored [CW-52].

i. The design of the prototype for an automated test generator for reactive and real time
systems based on attributed event grammars was completed. Efforts to assess the
effectiveness of the tool were started in FY 2003.

Dissemination

The results of the UniFrame research were published and presented in various professional forums such
as journals, conferences, workshops, showcases and seminars during the entire duration of the project.
The details of these are provided below. In addition, a website (www.cs.iupui.edu/uniFrame) was created. and maintained for the dissemination of the research results. The copies of a few sample publications are
enclosed with this report.

10

. Publications

Book Chapters [BC]

1. Andrew M. Olson, Rajeev R. Raje, Barrett R. Bryant, Mikhail Auguston, Carol Burt, "UniFrame
-- A Unified Framework for Developing Service-oriented, Component-based Distributed
Software Systems", in Service-Oriented Software System Engineering: Challenges and Practice
(Eds: Stojanovic and Dahanayake), pp: 68-87, Idea Group Publishing, 2005.

2. Graham Wilcock, Paul Buitelaar, Antonio Pareja-Lora, Barrett Bryant, Jimmy Lin, Nancy Ide,
"The Roles of Natural Language and XML in the Semantic Web", in Computational Linguistics
and Beyond (Eds: Huang and Lenders), pp. 139-186, Institute of Linguistics, Academia Sinica,
Tamkang, Taiwan, 2004.

3. Andrew M. Olson, Rajeev R. Raje, Barrett R. Bryant, Mikhail Auguston, Carol Burt, "A Process
for Generating Software for Distributed, Heterogeneous Systems", (invited) in Parallel and
Distributed Computing: Evaluation, Improvement and Applications (Eds: Y.S. Dai, Y. Pan, and
R. Raje), Nova Science Publishers, 2005, (To Appear).

Journal Papers [JPJ

1. Rajeev R. Raje, Barrett Bryant, Mikhail Auguston, Andrew Olson, Carol Burt, "A QoS-based
Framework for Creating Distributed and Heterogeneous Software Components", Concurrency
and Computation: Practice and Experience: 2002, 14, pp: 1009-1034, 2002.

2. Lee, Beum-Seuk and Bryant, Barrett R., "Applying XML Technology for Implementation of
Natural Language Specifications," International Journal of Computer Systems, Science and
Engineering 5 (September 2003), 3-24.

3. Chunmin Yang, Barrett R. Bryant, Carol Burt, Rajeev R. Raje, Andrew M. Olson, Mikhail
Auguston, "Formal Methods for Quality of Service Analysis in Component-based Distributed
Computing", Journal of Design & Process Science: Transactions of the Society for Design and
Process Science, 8, 2, pp. 137-149, 2004.

4. Fei Cao, Barrett Bryant, Rajeev R. Raje, Andrew Olson, Mikhail Auguston, Wei Zhao, Carol
Burt, "A Component Assembly Approach Based on Aspect-oriented Generative Domain
Modeling", Electronic Notes in Theoretical Computer Science (ENTCS), Elsevier Science, Vol.
114, pp. 119-136, 2005.

5. Fei Cao, Barrett Bryant, Rajeev R. Raje, Andrew Olson, Mikhail Auguston, Wei Zhao, Carol
Burt, "A Non-Invasive Approach to Assertive and Autonomous Dynamic Component
Composition in Service-Oriented Paradigm", Journal of Universal Computer Science, (Invited -
Under Review) 2005.

6. Fei Cao, Barrett R. Bryant, Wei Zhao, Carol C. Burt, Rajeev R. Raje, Andrew M. Olson, Mikhail
Auguston, "Model-Driven Reengineering Legacy Software Systems to Web Services",
International Journal of Information Technology and Web Engineering (Under Review), 2005.

11

7. Pradeep Mysore, Rajeev R. Raje, Barrett R. Bryant, Purushotham Bangalore, "Building High-
performance Systems using GridFrame", International Journal of High-performance Computer
Applications (Invited - To be Submitted), 2005.

8. Wei Zhao, Barrett R. Bryant, Fei Cao, Rajeev R. Raje, Mikhail Auguston, Carol C. Burt,
Andrew M. Olson, "The Language Oriented Domain Analysis Method," Computer Languages,
Systems and Structures (To be Submitted), 2005.

9. Rajeev R. Raje, Anjali Kumari, Andrew Olson, Barrett Bryant, Mikhail Auguston. Carol Burt,
"Multi-level Specification Matching", Concurrency and Computation (To be Submitted), 2005.

10. Rajeev R. Raje, Barun Devaraju, Pradeep Mysore, Andrew Olson, Barrett Bryant, Mikhail
Auguston, Carol Burt, "Incorporating Selective Search and Customization in the UniFrame
Resource Discovery Service", Cluster Computing (To be Submitted), 2005.

11. Alex Crespi, Rajeev R. Raje, Carol Burt, Andrew Olson, Barrett Bryant, Mikhail Augiston,
"Access Control in UniFrame", IEEE Transactions on Parallel and Distributed Systems (To be
Submitted), 2005.

Conference/Workshop Papers [CW]

1. Rajeev R. Raje, Barrett Bryant, Mikhail Auguston, Andrew Olson, Carol Burt, "A Unified
Approach for the Integration of Distributed Heterogeneous Software Components", Proceedings
of the 2001 Monterey Workshop (Sponsored by DARPA, ONR, ARO and AFOSR), pp: 109-199,
Monterey, California, 2001.

2. Mikhail Auguston, "Visual Meta-Programming Notation", Proceedings of the 2001 Monterey
Workshop (Sponsored by DARPA, ONR, ARO and AFOSR), pp: 50-61, Monterey, California,
2001.

3. Mikhail Auguston, Valdis Berzins, Barrett Bryant, "Visual Meta-Programming Language",
Proceedings of the OOPSLA 2001 Workshop on Domain Specific Visual Languages, pp: 69-
82,Tampa Bay, Florida, 2001.

4. Girish Brahnmath, Rajeev R. Raje, Andrew Olson, Barrett Bryant, Mikhail Auguston, Carol
Burt, "A Quality of Service Catalog for Software Components", Proceedings of the Southeastern
Software Engineering Conference}, pp: 513-520,Huntsville, Alabama, 2002.

5. Barrett R. Bryant, Beum-Seuk Lee, "Two-Level Grammar as an Object-Oriented Requirements
Specification Language", Proceedings of the 35th Hawaii International Conference on System
Sciences, CD-ROM, 10 pages, Hawaii, 2002.

6. Beum-Seuk Lee, Barrett Bryant, "Automated Conversion from Requirements Documentation to
an Object-Oriented Formal Specification Language", Proceedings of the 2002 ACM Symposium
on Applied Computing, pp: 932-936, Madrid, Spain, 2002.

7. Carol Burt, Rajeev R. Raje, Mikhail Auguston, Barrett Bryant, Andrew Olson, "Quality of
Service (QoS) Standards for Model Driven Architecture", Proceedings of the Southeastern
Software Engineering Conference, pp: 521-529, Huntsville, Alabama, 2002.

12

8. Beum-Seuk Lee, Barrett Bryant, "Prototyping of Requirements Documents Written in Natural
Language", Proceedings of SESEC 2002, the Southeastern Software Engineering Conference,
pp: 538-543, Huntsville, Alabama, 2002.

9. Beum-Seuk Lee, Barrett Bryant, "Contextual Knowledge Representation for Requirements
Documents in Natural Language", Proceedings of FLAIRS 2002, the 15 1 International Florida AI
Research Symposium, pp: 370-374, Pensacola Beach, Florida, 2002.

10. J. Bret Michael, Mikhail Auguston, N. Rowe, R. Riehle, "Software Decoys: Intrusion Detection
and Countermeasures", Proceedings of the IEEE Workshop on Information Assurance, United
States Military Academy, pp: 130-138, West Point, New York, 2002.

11. Chunmin Yang, Barrett Bryant, Rajeev Raje, Mikhail Auguston, Andrew Olson, Carol Burt,
"Formal Specification in Heterogeneous Distributed Software Integration", Proceedings of the
40d' Annual ACM Southeast Conference, pp. 201-202, Raleigh, North Carolina, 2002.

12. Fei Cao, Barrett Bryant, Rajeev Raje, Mikhail Auguston, Andrew Olson, Carol Burt, "Specifying
Heterogeneous Distributed Components", Proceedings of the 40th Annual ACM Southeast
Conference, pp: 199-200, Raleigh, North Carolina, 2002.

13. Wei Zhao, Barrett Bryant, Rajeev Raje, Mikhail Auguston, Andrew Olson, Carol Burt, "A
Unified Approach to Component Assembly Based on Generative Programming", Online
Proceedings of the Workshop on Generative Programming, Austin, Texas, 2002.

14. Wei Zhao, Barrett Bryant, Rajeev Raje, Mikhail Auguston, Andrew Olson, Carol Burt,
"Generative Composition of Distributed and Heterogeneous Components", Proceedings of the
40th Annual ACM Southeast Conference, pp: 195-196, Raleigh, North Carolina, 2002.

15. Nanditha Siram, Rajeev Raje, Barrett Bryant, Andrew Olson, Mikhail Auguston, Carol Burt,
"An Architecture for the UniFrame Resource Discovery Service", Proceedings of the 3 rd

International Workshop on Software Engineering and Middleware, pp: 20-35, Orlando, Florida,
2002.

16. Barrett Bryant, Mikhail Auguston, Rajeev Raje, Andrew Olson, Carol Burt, "Formal
Specification of Generative Component Assembly Using Two-Level Grammar", Proceedings of
the SEKE 2002, Fourteenth International Conference on Software Engineering and Knowledge
Engineering, pp: 209-212, Ischia, Italy, 2002.

17. Wei Zhao, "A Product Line Architecture for Component Model Domains", Proceedings of
PhDOOS 2002, Online Proceedings of the 12th Workshop for PhD Students in Object-Oriented
Systems, Malaga, Spain, 2002.

18. Beum-Seuk Lee, Barrett Bryant, "Contextual Processing and DAML for Understanding Software
Requirements Specifications", Proceedings of COLING 2002, the 19th International Conference
on Computational Linguistics, pp: 516-522,Taipei, Taiwan, August 2002.

19. Carol C. Burt, Barrett R. Bryant, Rajeev R. Raje, Andrew Olson. Mikhail Auguston, "Quality of
Service Issues Related to Transforming Platform Independent Models to Platform Specific
Models", Proceedings of the 6d' IEEE International Enterprise Distributed Object Computing
Conference, pp: 212-223, Lausanne, Switzerland, 2002.

13

20. Mikhail Auguston, C. Jeffery, S. Underwood, "A Framework for Automatic Debugging",
Proceedings of the 17th IEEE International Conference on Automated Software Engineering, ASE
2002, pp: 217-222, Edinburgh, U.K., 2002.

21. Fei Cao, "Using Two-Level Grammar in Component Specification", Proceedings of the First
ACM SIGPLAN Conference on Generators and Components (GPCE 2002), Young Researchers
Workshop, Pittsburgh, Pennsylvania, 2002.

22. Wei Zhao, "Two-Level Grammar as the Formalism for Middleware Generation in Internet
Component Broker Organizations", Online Proceedings of the First ACM SIGPLAN Conference
on Generators and Components (GPCE 2002), Young Researchers Workshop, Pittsburgh,
Pennsylvania, 2002.

23. Changlin Sun, Rajeev Raje, Andrew Olson, Barrett Bryant, Mikhail Auguston, Carol Burt,
Zhisheng Huang, "Composition and Decomposition of Quality of Service Parameters in
Distributed Component-Based Systems", Proceedings of the IEEE 5h International Conference
on Algorithms and Architectures for Parallel Processing, pp: 273-277, Beijing, China, 2002.

24. Zhisheng Huang, Rajeev Raje, Andrew Olson, Barrett Bryant, Mikhail Auguston, Carol Burt,
Changlin Sun, "System-Level Generative Programming of Unified Approach Based on UMM for
the Integration of Distributed Software Components", Proceedings of the IEEE 5h International
Conference on Algorithms and Architectures for Parallel Processing, Beijing, China, 2002.

25. Fei Cao, Barrett Bryant, Rajeev Raje, Mikhail Auguston, Andrew Olson, Carol Burt,
"Component Specification and Wrapper/Glue Code Generation with Two-Level Grammar using
Domain Specific Knowledge", Proceedings of the Proceedings of ICFEM 2002, 4h International
Conference on Formal Engineering Methods, pp: 136-142, Shanghai, China, 2002.

26. Beum-Seuk Lee, Barrett Bryant, "Automation of Software System Development Using Natural
Language Processing and Two-Level Grammar", Proceedings of the Monterey Workshop, pp:
244-257, Venice, Italy, 2002.

27. Clinton Jeffery, Mikhail Auguston, S. Underwood, "Towards Fully Automatic Execution
Monitoring", Proceedings of the Monterey Workshop, pp: 232-243, Venice, Italy, 2002.

28. Chunmin Yang, Beum-Seuk Lee, Barrett Bryant, Carol Burt, Rajeev Raje, Andrew Olson,
"Formal Specification of Non-Functional Aspects in Two-Level Grammar", UML 2002
Workshop on Component-Based Software Engineering and Modeling Non-Functional Aspects,
Dresden, Germany, 2002.

29. Wei Zhao, Barrett R. Bryant, Rajeev R. Raje, Mikhail Auguston, Andrew M. Olson, Carol C.
Burt, "A Component Assembly Architecture with Two-Level Grammar Infrastructure", Online
Proceedings of the OOPSLA'2002 Workshop on Generative Techniques in the context of MDA,
Seattle, Washington, 2002.

30. Purvi Shah, Barrett R. Bryant, Rajeev R. Raje, Carol Burt, Andrew Olson, Mikhail Auguston,
"Interoperability between Mobile Distributed Components using the UniFrame Approach",
Proceedings of the 41st Annual ACM South East Conference, pp: 30-35, Savannah, GA, 2003.

14

31. Natasha Gupta, Rajeev R. Raje, Andrew Olson, Barrett Bryant, Mikhail Auguston, Carol Burt,

"Analyzing the Web Services and UniFrame Paradigms", CD-ROM Proceedings of the

Southeastern Software Engineering Conference (8 pages), Huntsville, Alabama, 2003.

32. Carol C. Burt, Rajeev R. Raje, Barrett R. Bryant, Andrew Olson, Mikhail Auguston, "Model

Driven Security: Unification of Authorization Models for Fine-Grain Access Control",

Proceedings of the 7h IEEE International Enterprise Distributed Object Computing Conference,

pp: 159-173, Brisbane, Australia, 2003.

33. Wei Zhao, Barrett R. Bryant, Jeff Gray, Carol C. Burt, Rajeev R. Raje, Mikhail Auguston,

Andrew M. Olson, "A Generative and Model Driven Framework for Automated Software

Product Generation", Proceedings of the 6"' Workshop on Component-Based Software

Engineering: Automated Reasoning and Prediction, pp: 103-108, Portland, Oregon, 2003.

34. Clinton Jeffery, Mikhail Auguston, "Some axioms and issues in the UFO dynamic analysis

framework", Proceedings of Workshop on Dynamic Analysis, ICSE'03, 25, International

Conference on Software Engineering, pp: 45-48, Portland, Oregon, 2003.

35. Fei Cao, Barrett Bryant, Carol Burt, Jeffrey Gray, Rajeev Raje, Andrew Olson, Mikhail

Auguston, "Modeling Web Services: Towards System Integration in UniFrame", Proceedings of

the 7h World Conference on Integrated Design and Process technology (IDPT 2003), pp: 83-91,
Austin, Texas, 2003.

36. Chunmin Yang, Barrett Bryant, Carol Burt, Rajeev R. Raje, Andrew Olson, Mikhail Auguston,
"Formal Methods for Quality of Service Analysis in Component-Based Distributed Computing",
Proceedings of the 7h World Conference on Integrated Design and Process technology (IDPT

2003), pp: 291-299, Austin, Texas, 2003.

37. Fei Cao, Barrett R. Bryant, Carol C. Burt, Zhisheng Huang, Rajeev R. Raje, Andrew M. Olson,
Mikhail Auguston, "Automating Feature-Oriented Domain Analysis", Proceedings of the
International Conference on Software Engineering Research and Practice (SERP'03), pp: 944-

949, Las Vegas, Nevada, 2003.

38. Barrett Bryant, Beum-Seuk Lee, Fei Cao, Wei Zhao, Carol Burt, Rajeev Raje, Andrew Olson,
Mikhail Auguston, "From Natural Language Requirements to Executable Models of Software

Components", Proceedings of the 2003 Monterey Workshop, pp: 51-58, Chicago, Illinois, 2003.

39. Beum-Seuk Lee, Xiaoqing Wu, Fei Cao, Shih-hsi Liu, Wei Zhao, Chunmin Yang, Barrett R.

Bryant, Jeffrey G. Gray, "T-Clipse: an Integrated Development Environment for Two-Level

Grammar", OOPSLA 2003 Workshop on Eclipse Technology eXchange, pp: 91-95, Anaheim,
California, 2003.

40. Fei Cao, Barrett Bryant, Rajeev Raje, Mikhail Auguston, Andrew Olson, Carol Burt,

"Assembling Components with Aspect-oriented Modeling/Specification", Proceedings of UML
Workshop W2 -- Workshop in Software Model Engineering WiSE@UML'2003), (Online),

Francisco, California, 2003.

15

41. Fei Cao. Barrett Bryant, Rajeev R. Raje, Mikhail Auguston, Andrew Olson, Carol Burt. "A
Component Assembly Approach Based on Aspect-Oriented Generative Domain Modeling",
Proceedings of SC'04, Software Composition Workshop affiliated with ETAPS 2004, (Online),
Barcelona, Spain, 2004.

42. Mikhail Auguston, Mark Trakhtenbrot, Run Time Monitoring of Reactive System Models, in
Proceedings of Second International Workshop on Dynamic Analysis WODA 2004, the 261h
International Conference on Software Engineering ICSE 2004, pp: 68-75, Edinburgh, Scotland,
2004,

43. Wei Zhao, Barrett R. Bryant, Fei Cao, Rajeev R. Raje, Mikhail Auguston, Carol C. Burt, Andrew
M. Olson, "Grammatically Interpreting Feature Compositions", Proceedings of the 1 6th

International Conference on Software Engineering and Knowledge Engineering (SEKE'04), pp:
185-191. Banff, Canada, 2004.

44. Fei Cao, Barrett Bryant, Carol Burt, Rajeev R. Raje, Andrew Olson, Mikhail Auguston, "A
Meta-modeling Approach to Web Services", Proceedings of ICWS04, IEEE International
Conference on Web Services, pp: 796-799, San Diego, California, 2004.

45. Wei Zhao, Barrett R. Bryant, Rajeev R. Raje, Mikhail Auguston, Carol C. Burt, Andrew M.
Olson, "Automated Glue/Wrapper Code Generation in Integration of Distributed and
Heterogeneous Software Components", Proceedings of the 8th IEEE Enterprise Distributed
Computing Systems Conference (EDOC'04), pp: 275-285, Monterey, California, 2004.

46. Pradeep Mysore, Rajeev R. Raje, Purushottam Banglore, Barrett Bryant, "GridFrame -- A
Framework for Building Component-based Grid Systems", Proceedings of 12th International
Conference on Advanced Computing & Communication (ADCOM '04), pp: 23-31, Ahmedabad,
India, 2004.

47. Fei Cao, Barrett Bryant, Wei Zhao, Carol Burt, Rajeev R. Raje, Andrew Olson, Mikhail
Auguston. "Marshaling and Unmarshaling Models Using Entity-Relationship Model",
Proceedings of ACM SAC'05, ACM Symposium on Applied Computing, pp: 1553-1557, Santa
Fe, New Mexico, 2005.

48. Shih-hsi Liu, Barrett Bryant, Jeffrey Gray, Rajeev R. Raje, Andrew Olson, Mikhail Auguston.
"Two-level Assurance of QoS Requirements for Distributed Real-time and Embedded Systems",
Proceedings of ACM Symposium on Applied Computing, SAC'05, pp: 903-904, Santa Fe, New
Mexico, 2005.

49. Shih-hsi Liu, Barrett R. Bryant, Jeffrey G. Gray, Rajeev Raje, Andrew Olson and Mikhail
Auguston, "QoS-UniFrame: A Petri Net-based Modeling Approach to Assure QoS Requirements
of Distributed Real-time and Embedded Systems", Proceedings of the 12th Annual IEEE
International Conference and Workshop on the Engineering of Computer Based Systems
(ECBS'05), pp: 202-209, Greenbelt, Maryland, 2005.

50. Shih-hsi Liu, Fei Cao, Barrett R. Bryant, Jeffrey G. Gray, Rajeev Raje, Andrew Olson and
Mikhail Auguston, "Quality of Service-Driven Requirements Analyses for Component
Composition: A Two-Level Grammar Approach", To appear in the Proceedings of thel7th

16

International Conference on Software Engineering and Knowledge Engineering (SEKE'05),
Taipei, Taiwan, 2005.

51. Mikhail Auguston, James Bret Michael, Man-Tak Shing, Environment Behavior Models for
Scenario Generation and Testing Automation, in Online Proceedings of the First International
Workshop on Advances in Model-Based Software Testing (A-MOST'05), The 27 th International
Conference on Software Engineering ICSE'05, 2005, St. Louis, 2005.

52. Mikhail Auguston, James Bret Michael, Man-Tak Shing, Test Automation and Safety
Assessment in Rapid Systems Prototyping, to appear in Proceedings of 16th IEEE International
Workshop on Rapid System Prototyping, pp: 188-194, Montreal, Canada, 2005.

53. Mikhail Auguston, James Bret Michael, Man-Tak Shing, and David L. Floodeen, "Using
Attributed Event Grammar Environment Models for Automated Test Generation and Software
Risk Assessment of System-of-Systems", To appear in the Proceedings of 2005 IEEE
International Conference on Systems, Man, and Cybernetics, Special Session on Recent
Advances in Engineering Systems-of-Systems to Support Joint and Coalition Warfighters, The
Big Island, Hawaii, 2005.

Standards Documents [SD]

1. Carol C. Burt, "mars/04-04-15: Business Model Driven Access Management for Service-
Oriented Applications", OMG Draft RFP.

0 2. Carol C. Burt, "mars/04-02-12: Model Driven Access Management", OMG Draft RFP for a
Platform Independent Model for Access Management (with mappings to existing PSMs such as
OASIS XACML, OMG RAD, JCP JAAS, Microsoft Authorization Manger.

Dissertations and Theses [DT]

1. Nanditha N. Siram, "An Architecture for Discovery of Heterogeneous Software Components.",
M. S. Thesis, Department of Computer & Information Science, Indiana University Purdue
University Indianapolis, May, 2002.

2. Christina Varghese, "Examining, Documenting, and Modeling the Problem Space of a Variable
Domain", M. S. Project, TR-CIS-0612-02, Department of Computer & Information Science,
Indiana University Purdue University Indianapolis, August, 2002.

3. Girish Brahnmath, "The UniFrame Quality Of Service Framework", M. S. Thesis, Department of
Computer & Information Science, Indiana University Purdue University Indianapolis, December,
2002.

4. Zhisheng Huang, "The UniFrame System-Level Generative Programming Framework", M. S.
Thesis, Department of Computer & Information Science, Indiana University Purdue University
Indianapolis, May, 2003.

5. Changlin Sun, "QoS Composition and Decomposition in UniFrame", M. S. Thesis, Department
of Computer & Information Science, Indiana University Purdue University Indianapolis, August,
2003.

17

6. Robert Berbeco, "The UniFrame .NET Web Service Discovery Service", M. S. Project, TR-CIS-
0630-03, Department of Computer & Information Science, Indiana University Purdue University
Indianapolis, August, 2003.

7. Beum Seuk Lee, "Automated Conversion from a requirements document to an executable formal
specification using two-level grammar and contextual natural language processing", Ph. D.
Dissertation, Department of Computer and Information Sciences, The University of Alabama at
Birmingham, August 2003.

8. Tee Huu Saw, Captain (Singapore Armed Forces), "Evaluation of a Multi-agent System for
Simulation and Analysis of Distributed Denial-of-Service Attacks", Department of Computer
Science, Naval Postgraduate School, June 2003.

9. Richard M. Neidermyer, "Unified Meta-Component Model Specification Editor", M.S. Project
TR-CIS-0330-04, Department of Computer & Information Science, Indiana University Purdue
University, May, 2004.

10. Kalpana Tummala, "Glue Generation Framework In UniFrame for the CORBA-JAVA/RMI
Interoperability", M.S. Project TR-CIS-0302-03, Department of Computer & Information
Science, Indiana University Purdue University Indianapolis, May, 2004.

11. Jayasree Gandhamaneni, "UniFrame Mobile Agent Based Resource Discovery Service
(MURDS)", M.S. Project TR-CIS-I 122-03, Department of Computer & Information Science,
Indiana University Purdue University, August 2004.

12. Praveen Gopalakrishna, "Modeling QOS Parameters In Component-Based Systems", M. S.
Thesis, Department of Computer & Information Science, Indiana University Purdue University
Indianapolis, August, 2004.

13. Natasha S. Gupta, "An Exploratory Analysis of the .NET Component Model and UniFrame
paradigm using a collaborative approach", M. S. Thesis , Department of Electrical and Computer
Engineering, Indiana University Purdue University Indianapolis, August, 2004.

14. Graham C. Pierson, Major (US Marine Corps), "Code Maintenance and Design for a Visual
Programming Language Graphical User Interface", M. S. Thesis, Department of Computer
Science, Naval Postgraduate School, September 2004.

15. Anjali Kumari, "Synchronization and Quality of Service Specification and Matching of Software
Components", M. S. Thesis, Department of Computer and Information Science, Indiana
University Purdue University Indianapolis, December, 2004.

16. Padmavathi Kambhampati, "UML Variability and Automation of Variant Models", M. S. Thesis,
Department of Computer and Information Science, Indiana University Purdue University
Indianapolis, December, 2004.

17. Alexander Crespi, "An Access Control Model for the UniFrame Framework", M. S. Thesis,
Department of Computer and Information Science, Indiana University Purdue University
Indianapolis, December, 2004.

18

18. Yuan Chen, Major (Singapore Navy), "Evaluation of a Multi-agent System for Simulation and
Analysis of Distributed Denial-of-Service Attacks", M. S. Thesis, Department of Computer
Science, Naval Postgraduate School, December 2004.

19. Barun Devaraju, "Enhancement of The UniFrame Resource Discovery Service", M. S. Thesis,
Department of Computer and Information Science, Indiana University Purdue University
Indianapolis, May, 2005.

20. Srikanth Reddy, "UniFrame Resource Discovery Service Monitoring and Management System",
M. S. Project, TR-CIS-0411-05, Department of Computer and Information Science, Indiana
University Purdue University Indianapolis, May, 2005.

21. Pradeep Mysore, "An Experimental Evaluation of UniFrame Resource Discovery System", M. S.
Thesis, Department of Computer and Information Science, Indiana University Purdue University
Indianapolis, May, 2005.

22. James Imanian, LCDR (US Navy), "Automatic Test Case Generation for Reactive Software
Systems Based on Environment Models", M. S. Thesis, Department of Computer Science, Naval
Postgraduate School, June 2005.

23. Fei Cao, "Model-Driven Development and Dynamic Composition of Web Services", Ph. D.
Dissertation, Department of Computer and Information Sciences, The University of Alabama at
Birmingham, July 2005.

24. Wei Zhao, Ph. D. Dissertation, "Transformations from Business Process Models to High Level
Programming Languages", Department of Computer and Information Sciences, The University of
Alabama at Birmingham, December 2005.

Invited Presentations

(Apart from the conference and workshop presentations)

1. Rajeev R. Raje, "UniFrame", Software Engineering Research Center Summer Showcase,
Indianapolis, Indiana, June 2001.

2. Rajeev R. Raje, "UniFrame", CIP/SW Kickoff Meeting. Washington, D.C., July 2001.

3. Carol C. Burt, Barrett R. Bryant, Rajeev R. Raje, "UniFrame", OMG Meeting. Toronto, Ontario,
Canada, September 2001.

4. Barrett R. Bryant, "Object-Oriented Natural Language Requirements Specification", Sun Yat-
Sen University, Guangzhou, China, United Nations University, International Institute for
Software Technology, Macau, China, and Chinese University of Hong Kong, Shatin, Hong
Kong, China, October 2001.

5. Andrew Olson, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", SERC Showcase, Muncie, Indiana, December 2001.

s 6. Rajeev R. Raje, "UniFrame", at the Connect-Tech, Indianapolis, IN, December 2001.

19

7. Carol Burt, "UniFrame - a unified framework for integration of distributed components", OMG
Technical Meeting (to ORB/OS Group), Anaheim, California, February 2002.

8. Barrett R. Bryant, "XML and DAML for Contextual Knowledge Representation of Natural

Language Requirements Documents", 79h Annual Meeting of the Alabama Academy of Science,
Livingston, Alabama, March 2002.

9. Fei Cao, "Locating Heterogeneous Distributed Components Using Headhunters", 79h Annual

Meeting of the Alabama Academy of Science, Livingston, Alabama, March 2002. (This

presentation was co-winner of the Student Research Award for best student presentation in the

Engineering and Computer Science Section of the Alabama Academy of Science.)

10. Chunmin Yang, "Application of Formal Methods in Distributed Computing", 79th Annual

Meeting of the Alabama Academy of Science, Livingston, Alabama, March 2002. (This

presentation was co-winner of the Student Research Award for best student presentation in the

Engineering and Computer Science Section of the Alabama Academy of Science.)

11. Wei Zhao, "Generative Automation of Middleware", 79th Annual Meeting of the Alabama
Academy of Science, Livingston, Alabama, March 2002.

12. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components," University of Houston, Houston, Texas, April, 2002.

13. Barrett R. Bryant, "Object-Oriented Natural Language Requirements Specification", University
of Milan at Crema, Crema, Italy, and Soft People Tecnologie.net, Milan, Italy, April 2002.

14. Natasha Gupta, "Encompassing .Net Framework and Web Services into UniFrame", Spring
Showcase of SERC, Morgantown, VW, May 2002.

15. Carol C. Burt, "UniFrame", University of Edinburgh, Edinburgh, Scotland, United Kingdom,
May 2002.

16. Rajeev R. Raje, "UniFrame," U. S. Office of Naval Research, London, England, United
Kingdom, May, 2002.

17. Barrettt R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components," University of Lancaster, Lancaster, England, United
Kingdom, May 2002.

18. Barrett R. Bryant, "Object-Oriented Natural Language Requirements Specification",Carlos 1II
University of Madrid, Madrid, Spain, June 2002.

19. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", INRIA, Sophia Antipolis, France, June 2002.

20. Barrett R. Bryant, "Object-Oriented Natural Language Requirements Specification", University
of Ljubljana, Ljubljana, Slovenia, July 2002.

21. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", National Taiwan University, Taipei, Taiwan, August 2002.

20

22. Rajeev R. Raje, "UniFrame", NSF ES-EU Workshop, Landsdowne, VA, September 2002.

23. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", Illinois Institute of Technology, Chicago, Illinois, October
2002.

24. Rajeev R. Raje, "UniFrame", VJTI, University of Bombay, India, December 2002.

25. Natasha Gupta, Girish Brahnmath, "UniFrame and Component Quality of Service", SERC Fall
Showcase, Muncie, Indiana, December 2002.

26. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", Magic City Java Users Group, Birmingham, Alabama,
February, 2003.

27. Andrew Olson, "Herding Software Development Over the Electronic Range", Department of
Computer & Information Science, IUPUI, March, 2003.

28. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", Jagiellonian University, Krakow, Poland, April, 2003.

29. Rajeev R. Raje, Barrett Bryant, Mikhail Auguston, "UniFrame", U. S. Office of Naval Research
(Annual Review), Harpers Ferry, West Virginia, May 2003.

30. Alex Crespi, Praveen Gopalakrishna, "UniFrame Discovery Service and the System Generator",
Spring 2003 Software Engineering Research Center Showcase, West Virginia University,
Morgantown, West Virginia, May 2003.

31. Rajeev R. Raje, Barrett R. Bryant, Andew M. Olson, Mikhail Auguston, Carol C. Burt,
"UniFrame", U. S. Office of Naval Research (Final Review), Annapolis Junction, Maryland,
November 2003.

32. Carol Burt, "Model Driven Access Management", OMG's Security Information Day, London, U.
K., November 2003.

33. Andrew M. Olson, "Constructing Distributed Computing Systems with the UniFrame Process",
Departamento de las Ciencias de]a Computaci6n, Facultad de Ciencias Ffsicas y Matemriticas,
Universidad de Chile, Santiago, Chile, December 2003.

34. Carol Burt, "Model Driven Access Management", OMG's Security Information Day, Anaheim,
California, January 2004.

35. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", ACM Student Chapter, University of Porto, Porto, Portugal,
March 2004.

36. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", University of Minho, Braga, Portugal, March 2004.

21

37. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", New University of Lisbon, Lisbon, Portugal, March 2004.

38. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", NASA Ames Research Laboratory, Mountain View,
California, September 2004.

39. Amruta Jejurikar, Rajeev R. Raje, "Development of Distributed Component-based Systems -
A Symbiosis of UniFrame Principles and Microsoft's Infrastructure", Microsoft Corporation,
Redmond, Washington, June 2005.

40. Barrett R. Bryant, "UniFrame: Framework for Seamless Interoperation of Heterogeneous
Distributed Software Components", University of Maribor, Slovenia, and University of Milan at
Crema, Italy, June 2005.

41. Rajeev R. Raje, "UniFrame Resource Discovery Service", The University of Alabama at
Birmingham and IEEE Section of Birmingham, July 2005 (Scheduled).

Prototypes

1. URDS (UniFrame Resource Discovery Service) - Different Versions
2. URDS Management and Monitoring System
3. UniFrame System Constructor
4. UniFrame QoS Catalog
5. Glue and Wrapper Generators
6. Automated test generator for reactive and real time systems based on environment models
7. Run time monitoring system for C/C++ executables via Dyninst

Collaborations and Interactions

The UniFrame research team interacted with a variety of groups, academic and industrial organizations,
during the investigations. The interactions were in the forms of discussions, seminars, joint publications
and proposals. Below these partners are enumerated.

1. Academic Institutes: Michigan State University, Charles University (Czech Republic),
University of Maribor (Slovenia), Lancaster University (UK), University of Edinburgh (UK),
Jadavpur University (India), IIT-B (India), VJTI (India).

2. Industrial Organizations: 2AB, Inc., Microsoft Corporation, Stryon Incorporated, Disha
Technologies, Inc., OMG (Object Management Group), SERC (Software Engineering Research
Center), BBN Technologies, Computer Sciences Corporation.

Citations

The UniFrame research publications have been well received by the community. Many of these
publications have been cited by other researchers. A citation search on Google indicated more than fifty
external citations to various UniFrame related publications.

22

Educational Activities

Students

1. IUPUI - R. Berbeco, G. Brahnmath, R. Bulusu, A. Crespi, V. Cheekati*, B. Devaraju, J.
Freeman, J. Gandhamaneni*, P. Gopalkrishna, N. Gupta*, J. Hansome, Z. Huang, A. Jejurikar*,
A. Kumari*, P. Kambhampati*, P. Mysore, N. Nayani*, R. Neidermyer, S. Reddy, M. Ridzal, C.
Sun, 0. Tilak. K. Tummala*, C. Varghese*.

2. UAB - F. Cao, B. Lee, S. Liu, S. Mugala, R. Puljala, P. Shah*, X. Wu. C. Yang*, W. Zhao*.

3. NMSU/NPS - G. Fragkos, A. Islam, S. Underwood, T. Saw, G. Pierson, Y. Chen, J. Imanian.

(Note: A majority of these students were financially supported by this award. The remaining
students, although not financially supported, worked on research topics that stemmed from the
UniFrame research. The women students are indicated with an * symbol. Students, at NPS, were
employees of the DoD - US as well as allied countries.)

Impact on Education

This research has impacted the education at all the participating institutes. The impact is classified
into the four categories indicated below:

*I. Enriching Student Research Experience by:
a. Inter- and intra-university collaborations
b. Proficiency with prevalent state-of-the-art
c. Participation in professional forums

2. Impact on Curricula by:
a. Incorporation of research material into courses at IUPUI, UAB, NMSU and NPS

3. Computing Infrastructure Enhancement by:
a. Creation of Heterogeneous Computing Laboratories at IUPUI, UAB and NMSU

4. Invited Presentations to:
a. Academic institutions, industrial forums and standards organizations

Other References [OR]

1. Raje, R., "UMM: Unified Meta-object Model for Open Distributed Systems", Proceedings of 4th
IEEE International Conference on Algorithms and Architecture for Parallel Processing,
ICA3PP'2000, pp: 454-465, 2000.

2. Beugnard, A., Jezequel, J., Plouzeau, N., Watkins, D., "Making Components Contract Aware",
IEEE Computer, Vol. 32, No. 7, pp: 38-45, 1999.

3. Auguston, M., "Program Behavior Model Based on Event Grammar and its Application for
Debugging Automaton", Proceedings of the 2nd International Workshop on Automated and
Algorithmic Debugging (AADEBUG'95), pp: 277-291, 1995.

23

4. Mukhopadhyay, S., Peng, S., Raje, R., Palakal, M., Mostafa J., "Multi-Agent Information
Classification Using Dynamic Acquaintance Lists", Journal of the American Society for
Information Science and Technology, Vol. 54(10), pp: 966-975, 2003. @article{Tha85,

5. Thathachar, M., Sastry, P., "A New Approach to the Design of Reinforcement Schemes for
Learning Automata", IEEE Transactions on System Man Cybernetics, vol. 15, pp: 168-175,
1985.

6. Zaremski, A., Wing, J., "Specification Matching of Software Components, Proceedings of
SIGSOFT'95 Third ACM SIGSOFT Symposium on the Foundations of Software Engineering,
pp: 6-17, 1995.

7. Zaremski, A., Wing, J., Specification Matching of Software Components, ACM Transactions on
Software Engineering, vol. 6, no. 4, pp: 333-369, 1995.

8. Lamport, L., "Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers, Addison Wesley Publication Company, 2002.

9. Gamma, E., Helm R., Johnson, R., Vlissides, J., "Design Patterns: Elements of Reusable Object-
Oriented Software", Addison Wesley Publication Company, 1994.

0

0

24

0
Appendix (List of Sample Publications)

Following papers are included as sample publications. The details (such as the venue of publication,
dates, and authors are indicated earlier under the publications sections). The rest of the publications are
available at the UniFramne website (www. cs. iupui. eduluniFrame).

1. A Unified Approach for the Integration of Distributed Heterogeneous Software Components

2. Two-Level Grammar as an Object-Oriented Requirements Specification Language

3. A Quality of Service-based Framework for Creating Distributed Heterogeneous Software
Components

4. A Quality of Service Catalog for Software Components

5. Quality of Service (QoS) Standards for Model Driven Architecture

6. An Architecture for the UniFrame Resource Discovery Service

7. Quality of Service Issues Related to Transforming Platform Independent Models to Platform
Specific Models

8. A Framework for Automatic Debugging

9. Unified Approach for System-Level Generative Programming

10. Composition and Decomposition of Quality of Service Parameters in Distributed Component-
based Systems

11. Automation of Software System Development Using Natural Language Processing and Two-
Level Grammar

12. Formal Specification of Non-Functional Aspects in Two-Level Grammar

13. Towards Fully Automatic Execution Monitoring

14. A Component Assembly Architecture with Two-Level Grammar Infrastructure

15. Some Axioms and Issues in the UFO Dynamic Analysis Framework

16. Automating Feature-Oriented Domain Analysis

17. Model Driven Security: Unification of Authorization Models for Fine-Grain Access Control

S18. From Natural Language Requirements to Executable Models of Software Components

19. Assembling Components with Aspect-Oriented Modeling/Specification

25

20. Modeling Web Services: Towards System Integration in UniFrame

21. Automated Glue/Wrapper Code Generation in Integration of Distributed and Heterogeneous
Software Components

22. Formal Specification of Generative Component Assembly Using Two-Level Grammar

23. Analyzing the Web Services and UniFrame Paradigms

24. A Component Assembly Approach Based on Aspect-Oriented Generative Modeling

25. QoS-UniFrame: A Petri Net-based Modeling Approach to Assure QoS Requirements of
Distributed Real-time and Embedded Systems

26. Quality of Service-Driven Requirements Analyses for Component Composition: A Two-Level
Grammar++ Approach

27. Marshaling and Unmarshaling Models Using the Entity-Relationship Model

28. A Meta-Modeling Approach to Web Services

29. Model-Driven Reengineering Legacy Software Systems to Web Services

S30. A Non-Invasive Approach to Assertive and Autonomous Dynamic Component Composition in
Service-Oriented Paradigm

31. GridFrame -- A Framework for Building Component-based Grid Systems

32. UniFrame -- A Unified Framework for Developing Service-oriented, Component-based
Distributed Software Systems

0

26

(Appeared in the Proceedings of the 2001 Monterey Workshop - Pages 109-119)

* A Unified Approach for the Integration of
Distributed Heterogeneous Software Components1

Rajeev R. Raje2 3 Mikhail Auguston4 ' Barrett R. Bryant 4 6 Andrew M. Olson2 Carol Burt7

Abstract

Distributed systems are omnipresent these days. Creating efficient and robust software for such systems is a highly
complex task. One possible approach to developing distributed software is based on the integration of heterogeneous
software components that are scattered across many machines. In this paper, a comprehensive framework that will allow
a seamless integration of distributed heterogeneous software components is proposed. This framework involves: a) a meta-
model for components and associated hierarchical setup for indicating the contracts and constraints of the components,
b) an automatic generation of glues and wrappers, based on a designer's specifications, for achieving interoperability, c)
a formal mechanism for precisely describing the meta-model, and d) a formalization of quality of service (QoS) offered
by each component and an ensemble of components. A case study from the domain of distributed information filtering is
described in the context of this framework.

Keywords: Distributed systems, Formal methods, Glue and Wrapper technology, Quality of Service

1 Introduction

The rapid advances in the processor and networking technologies have changed the computing paradigm from a centralized
to a distributed one. This change in paradigm is allowing us to develop distributed computing systems (DCS). DCS
appear in many critical domains and are, typically, characterized by: a) a large number of geographically dispersed and
interconnected machines, each containing a subset of the required data, b) an open architecture, c) a local autonomy
over the hardware and software resources, d) a dynamic system configuration and integration, e) a time-sensitivity of the
expected solution, and f) the quality of service with an appropriate notion of compensation. These characteristics make
the software design of DCS an extremely difficult task.. One promising approach to the software design of DCS is based on the principles of distributed component computing.
Under this paradigm DCS are created by integrating geographically scattered heterogeneous software components. These
components constantly discover one another, offer/utilize services, and negotiate the cost and the quality of the services.
Such a view provides a scalable solution and hides the underlying heterogeneity.

Various distributed component models, each with strengths and weaknesses, are prevalent and widely used. However,
almost a majority of these models have been designed for 'closed' systems, i.e., systems, although distributed in nature,
are developed and deployed in a confined setup. In contrast, a direct consequence of the heterogeneity, local autonomy
and the open architecture is that the software realization of DCS requires combining components that adhere to different
distributed models. This in turn increases the complexity of the design process of DCS. Hence, a comprehensive framework,
that provides a seamless access to underlying components and aids in the design of DCS, is needed.

In this paper, one such framework is described. This framework consists of: a) a meta-model for components and
associated hierarchical setup for indicating the contracts and constraints of the components, b) an automatic generation of
glue and wrappers, based on a designer's specifications, for achieving interoperability, c) a formal mechanism for precisely
describing the meta-model, and d) a formalization of the notion of quality of service offered by each component and an
ensemble of components. The paper also presents a case study that shows the application of the framework to a specific
problem domain.

The rest of the paper is organized as follows. The next section contains a detailed discussion about the meta-model.
As an application of the meta model, a case study from the domain of distributed information filtering is presented in
the Section 3. Section 4 deals with the formal specification of the meta model, the automated system integration, and
evaluation of the approach. Finally, we conclude in Section 5.

1This material is based upon work supported by, or in part by, the U. S. Office of Naval Research under award number N00014-01-1-0746.2Department of Computer and Information Science, Indiana University Purdue University Indianapolis, 723 W. Michigan Street,
SL 280, Indianapolis, IN 46202, USA, {rraje, aolson}Ocs.iupui.edu, +1 317 274 5174/9733

3This material is based upon work supported by, or in part by, the National Science Foundation Digital Libraries Phase II grant.
4 Computer Science Department, Naval Postgraduate School, 833 Dyer Rd., SP 517, Monterey, CA 93943, USA,

{auguston, bryant} Ocs.nps.navy.mil, +1 831 656 2509/2726
5This material is based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army Research Office under

contract/grant number 40473-MA. On leave from Computer Science Department, New Mexico State University, USA.# his material is based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army Research Office
rcontract/grant number DAAD19-00-1-0350. On leave from Department of Computer and Information Sciences, University at Alabama at
ingham, USA.

7 2AB, Inc., 1700 Highway 31, Calera, AL 35040, USA, cburt02ab.com, +1 205 621 7455

2 Component Models and a Meta-model

* Many models and projects for the software realization of DCS have been proposed by academia and industry. A few
prominent ones are: JavaTM Remote Method Invocation (RMI) [16], Common Object Request Broker Architecture

(CORBA TM
) [16, 20], Distributed Component Object Model (DCOMTM) [11, 16], Web-component model/DOM [10],

Pragmatic component web [5], Hadas [6], Infospheres [4], Legion [221, and Globus [21]. Each of these models/projects has
strength and weaknesses. Some of these are language-centric and only assume a uniform way of the world (Java); while
the others allow a limited interoperability (CORBA - allowing implementations in different languages). Some of these
are general-purpose, i.e., not concentrating on any particular application domain (DCOM), while others are specifically
tailored to high-performance computing applications (Legion). However, almost all of these models/projects do not assume
the presence of other models. Thus, the interoperability which they provide is limited mainly to the underlying hardware
platform, operating system and/or implementational languages. Also, there are hardly any models which emphasize the
notion of quality of service offered by the components. Projects, such as Agent TCL [8], etc., based on the principles of
intelligent agents have imbibed the notion of the quality of service and related compensation. However, the agents are at
a higher level of abstraction than components and many of the agent projects/frameworks use one or the other existing
distributed-component models at the low-level.

2.1 Why a Meta-model?

Given the above mentioned plethora of component-based models and also noting the fact that components, by their
definition, are independent of the implementation language, tools and the execution environment; it is necessary to answer
the questions: why is a meta-model needed for a seamless interoperation of distributed heterogeneous components? and
how would a meta-model assist in seamlessly integrating distributed heterogeneous software components? The answer to
these question lies in: a) in any organization, software systems undergo changes and evolutions, b) local autonomy is an
inherent characteristic of today's geographically (or logically) dispersed organizations, and c) if reliable software needs to
be created for a DCS by combining components then the quality of service offered by each component needs to become a
central theme of the software development approach.

The consequence of constant evolutions and changes is that there is a need to rapidly create prototypes and experiment
with them in an iterative manner. Thus, there is no alternative but to adhere to cyclic (manual or semi-automatic)
component-based software development for DCS. However, the solution of decreeing a common COTS environment, in an. organization, is against the principle of local autonomy. Hence, the development of a DCS in an organization will, most
certainly, require creating an ensemble of heterogeneous components, each adhering to some model. Also, every DCS is
designed and developed with a certain goal in mind, and usually that goal is associated with a certain perception of the
quality (as expected from the system) and related constraints.

Thus, there is a need for a comprehensive meta-model that will seamlessly encompass existing (and future) heterogeneous
components by capturing their necessary aspects, including the quality of service offered by each component and an
amalgamation of components.

2.2 Unified Meta-component Model (UMM)

In [17] we have proposed a unified meta-component model (UMM) for global-scale systems. The core parts of the UMM
are: components, service and service guarantees, and infrastructure. The innovative aspects of the UMM are in the
structure of these parts and their inter-relations. UMM provides an opportunity to bridge gaps that currently exist in the
standards arena. For example, the CORBA Component Model (CCMTM) [13] and Java Enterprise Edition component

models (J2EETM) are consistent, and yet, because of the absence of a formal meta-model, it is difficult during the evolution
of each to recognize when the boundaries that maintain the consistency are crossed. Similarly, it has been demonstrated in
numerous products that the Component Object Model (COMTM) [18] and CORBA component models are similar (in an
abstract sense) enough to allow meaningful bridging. It is, however, not possible to point to a Meta-model that constrains
the implementations of these technologies.

For enterprise component solutions, this is an area where significant standards work is now focused. The OMG Meta

Object Facility (MOFTM) [141 provides a common meta-model that allows the interchange of models between tools as well
as the expression of models in XMITM (an MOF compliant XMLTM (eXtended Markup Language)) [12]. This work allows
the generation of interfaces from Unified Modeling Language (UML) [19] models, however, a careful analysis of the resulting
interface specifications makes it clear that distribution is not a key factor in the algorithms used. For example, quality of
service requirements for performance, scalability and/or security would dictate the use of iterators, the factoring of interfaces
to separate "query" and "administrative" operations, and the use of structures and/or objects passed by value. The current
standards in this tend to focus on data access with accessors and mutators and relationship transversal. This is acceptable

* in a single machine environment, but unacceptable for highly distributed communications and collaborations. The recent
shift in focus for the Object Management Group to "Model Driven Architecture" (MDATM) [15] is a recognition that
to create mechanized software for the collaboration and bridging of component architectures will require standardization

of Business and Component Meta-Models. The need to support the evolution of component models and to describe the
capabilities of the models will be key to realizing the full potential of an E-business economy.

O The following sections describe the various aspects of UMM in detail.

2.2.1 Component

In UMM, components are autonomous entities, whose implementations are non-uniform, i.e., each component adheres to
some distributed-component model and there is no notion of either a centralized controller or a unified implementational
framework. Each component has a state, an identity and a behavior. Thus, all components have well-defined interfaces
and private implementations. In addition, each component in UMM has three aspects: 1) a computational aspect, 2) a
cooperative aspect, and 3) an auxiliary aspect.

Computational Aspect

The computational aspect reflects the task(s) carried out by each component. It in turn depends upon: a) the objective(s)
of the task, b) the techniques used to achieve these objectives, and c) the precise specification of the functionality offered
by the component. In DCS, components must be able to 'understand' the functionality of other components. Thus, each
component in UMM supports the concept of introspection, by which it will precisely describe its service to other inquiring
components. There are various alternatives for a component to indicate its computation - ranging from simple text to
formal descriptions. Both these extremes have advantages and drawbacks. UMM takes a mixed approach to indicate the
computational aspect of a component - a simple textual part, called inherent attributes and a formal precise part, called
functional attributes.

The functional part is formal and indicates precisely the computation, its associated contracts and the level(s) of service
offered by the component. Multi-level contracts for components have been proposed by [2], classifying the contracts into
four levels - syntactic, behavioral, concurrency and quality of service (QoS). UMM integrates this multi-level contract
concept into the functional part of the computational aspect. As stated earlier, in DCS each component will be offering a
service and hence, the level related to the QoS is especially critical in UMM. The QoS depends upon many factors such
as, the algorithm used, the execution model, resources required, time, precision and classes of the results obtained. UMM
makes an attempt at quantifying the QoS by creating a vocabulary and providing multiple levels of quality, which could
be negotiated by the components involved in an interaction. The functional part will also be specified by the creator of
the component.

. Cooperative Aspect

In UMM, components are always in the process of cooperating with each other. This cooperation may be task-based
or greed-based. The cooperative aspect depends on many factors: detection of other components, cost of service, inter-
component negotiations, aggregations, duration, mode, and quality. Informally, the cooperative aspect of a component
may contain: 1) Expected collaborators - other components that can potentially cooperate with this component, 2) Pre-
processing collaborators - other components on which this component depends upon, and 3) Post-processing collaborators
- other components that may depend on this component.

Auxiliary Aspect

In addition to computation and cooperation, mobility, security, and fault tolerance are necessary features of DCS. The
auxiliary aspect of a component will address these features. In UMM, each component can be potentially mobile. The
mobility of the component will be shown as a 'mobility attribute' (a notion similar to the inherent attribute). If a component
is mobile, then the mobility attribute will contain the necessary information, such as its implementation details and required
execution environment. Similarly, security in DCS is a critical issue. The security attribute of a component will contain the
necessary information about its security features. As DCS are prone to frequent failures, full and partial, fault tolerance is
critical in these systems. Similar to mobility and security, each component contains fault-tolerant attributes in its auxiliary
aspect.

2.2.2 Service and Service Guarantees

The concept of a service is the second part of the UMM. A service could be an intensive computational effort or an access to
underlying resources. In DCS, it is natural to have several choices for obtaining a specific service. Thus, each component,
in addition to indicating its functionality, must be able to specify the cost and quality of the service offered.

The nature of the service offered by each component is dependent upon the computation performed by that component.
In addition to the algorithm used, expected computational effort and resources required, the cost of each service will be
decided by the motivation of the owner and the dynamics of supply and demand. In a dynamic environment costs must. always be accompanied by the duration for which the costs are valid. As the system dynamics undergo constant changes,
the methodologies used to fix the cost of a service will evolve as time progresses, thereby creating a need to indicate the
time sensitiveness of the cost. The quality of service is an indication given by an component, on behalf of its owner, about

its confidence to carry out the required services in spite of the constantly changing execution environment and a possibility
of partial failures. The techniques used to determine the cost, the time-validity and the quality of a service will depend. upon the tasks carried out by the component and the objectives of its owner and will involve principles of distributed
decision making.

There are many parameters that a component can use to indicate its quality of service. A few examples are: i)
Throughput - number of methods executed per second and classification of methods based on their read/write behaviors,
ii) Parallelism constraints - synchronous or asynchronous, iii) Priority, iv) Latency or End-to-End Delay - turn-around
time for an invocation, v) Capacity - how many concurrent requests a given component can handle, vi) Availability -
indication of the reliability of a component, vii) Ordering constraints - can invocations (asynchronous) be executed out
of order by a component, viii) Quality of the result returned - does the component provide a classification or ranking
of the result, and ix) Resources available - how many resources (hardware/data) are accessible to the component under
consideration and what are the types of resources.

When a component uses certain metrics to indicate its QoS (either all the mentioned criteria or a sub/super set of
them), three interesting issues need to be addressed: a) how does the component developer decide these parameters?,
b) how does the developer guarantee the advertised QoS during the execution?, and c) when components are collected
together as a solution for specific DCS, what happens to the QoS of the combination and how does the combined QoS
meet the quality requirements of DCS?

The parameters to be used to describe the QoS of a component are highly context (application) dependent. The
proposed approach is to create lists of QoS metrics for common application domains. A few examples of such domains
are: scientific computing, multi-media applications, information filtering, and databases. Once such lists are created, they
would be used as a template by the component developers while advertising the QoS of their components.

QoS of Components

The issue of guaranteeing a particular QoS, for a component, in an ever changing dynamic DCS is extremely critical;
mainly because of external (e.g., policy matters related to resources) and internal (e.g., changes in algorithms) factors
that affect a life cycle of a component. In addition, as the software realization of DCS is based on an amalgamation of
heterogeneous components, a proper guarantee of a QoS offered by a component effectively decides the QoS of the entire
DCS. The quality metrics are expected to vary from one application domain to another and which metrics to select would
depend on the intentions of the component developer and the functionality offered by that component. A few examples of
such QoS metrics are already mentioned in the previous section. Irrespective of the metrics selected, there is a need for
a well-defined mechanism that will assist the developer to achieve the necessary QoS when that component is deployed.
Just like any software development process, the process of guaranteeing a certain QoS, as offered by a component, will be
an incremental and iterative one, as will be discussed later.

QoS of an Integrated System

In addition to the QoS of individual components, there is a need to achieve a certain QoS for the ensemble of heterogeneous
components assembled for a distributed system under discussion. The QoS of such an amalgamation will be decided by
the design constraints of the system under construction. However, the integral characteristics of such a system typically
cannot be expressed as a function of individual components but as a property of the whole system behavior. Hence, there
is a need for a formal model of system behavior, which will integrate the behaviors of each component in the ensemble
along with its QoS guarantees.

The proposed approach to address the problem of QoS is as follows. First, build a precise model of systems behavior
(event trace notion), provide a programming formalism to describe computations over event traces, and then apply these
in order to define different kinds of QoS metrics. Constructive calculations of QoS metrics on a representative set of test
cases is one of cornerstones of the proposed iterative approach to system assembly from components meeting user's query
specifications.

This approach to the design of a system behavior model assumes that the run time actions performed within the system
may be observed as detectable events. Each event corresponding to an action is a time interval, with beginning, end, and
duration. Certain attributes could be associated with the event, e.g. program state, source code fragment, time, etc. There
are two binary relations defined for the event space: inclusion (one event may be nested within another), and precedence
(events may be partially ordered accordingly to the semantics of the system under consideration). Hence, when executed,
a system generates an event trace - set of events structured along the relations above. This event trace actually can be
considered as a formal behavior model of the system ("lightweight semantics"). This model could be presented as a set of
axioms about event trace structure called event grammar [1].

For example, suppose that the entire system execution is represented by an event of type execute-system. It may
contain events of the type evaluate-component-A and evaluate-component-B. Event grammar may contain an axiom:
execute-system: (evaluate-component-A evaluate-component-B)*. which states that evaluate-component-A is always followed by the evaluate-component-B event, and these pairs may be
repeated zero or more times.

A new concept for specification and validation of target program behavior based on the ideas of event grammars and

computations over program execution traces has been developed, and assertion language mechanisms, including event
patterns and aggregate operations over event traces, to specify expected behavior, to describe typical bugs, and to evalu-. ate debugging queries to search for failures (e.g. gathering run time statistics, histories of program variables, etc.) have
been created. An event grammar provides a basis for QoS metrics implementation via target program automatic instru-
mentation. Since the instrumentation is conditional, it does not deteriorate the efficiency of the final version generated
code. This mechanism based on independent models of system behavior makes it possible to define QoS metrics as generic
trace computations, so that the same metric may be applied to different versions of an assembled system (via automatic
instrumentation). To facilitate use of the event grammar model for the assembled system, the event definitions should be
consistent through the entire component space. The QoS metrics for components should adhere to this principle. The
process proposed in Section 4.4 for assembling a distributed system from components in a distributed network offers a
possible approach to achieving this.

2.2.3 Infrastructure

As local autonomy is inherent in open DCS, forcing every component developer to abide by certain rigid rules, although
attractive, is doomed to fail. UMM tackles the issue of, non-uniformity with the assistance of the head-hunter and Internet
Component Broker. These are responsible for allowing a seamless integration of different component models and sustaining
a cooperation among heterogeneous (adhering to different models) components.

Head-hunter Components

The tasks of head-hunters are to detect the presence of new components in the search space, register their functionalities,
and attempt at match-making between service producers and consumers. A head-hunter is analogous to a binder or a
trader in other models, with one difference - a trader is passive, i.e., the onus of registration is on the foreign components
and not on the trader. In contrast, a headhunter is active, i.e., it discovers other components and makes an attempt to
register them with itself. There are many approaches possible for the discovery of components. They range from the
standard search techniques to broadcasts and multi-casts to selected machines. At a conceptual basis, UMM does not tie
itself to a specific approach but during the prototype development a particular approach will be selected for the discovery
process. During registration, each component will inform the head hunter about all its aspects. The head hunter will
use this information during matching. A component may be registered with multiple head-hunters. Head-hunters may
cooperate with each other in order to serve a large number of components. The functionality of head hunters makes it. necessary for them to communicate with components belonging to any model, implying that the cooperative aspect of
head hunters be universal. Considering the heterogeneous nature of the components, it is conceivable that the software
realization of a distributed system will require an ensemble of components adhering to different models. This requires a
mediator, the Internet Component Broker, that will facilitate cooperation between heterogeneous components.

Internet Component Broker

The Internet Component Broker (ICB) acts as a mediator between two components adhering to different component
models. The broker will utilize adapter technology, each adapter component providing translation capabilities for specific
component architectures. Thus, a computational aspect of the adapter component will indicate the models for which it
provides interoperability. It is expected that brokers will be pervasive in an Internet environment thus providing a seamless
integration of disparate components. Adapter components will register with the ICB and while doing so they will indicate
their specializations (which component models they can bridge efficiently). During a request from a seeker, the head hunter
component will not only search for a provider, but it will also supply the necessary details of an ICB.

The adapter components achieve interoperability using the principles of wrap and glue technology [9]. A reliable,
flexible and cost-effective development of wrap and glue is realized by the automatic generation of glue and wrappers based
on component specifications. Wrapper software provides a common message-passing interface for components that frees
developers from the error prone tasks of implementing interface and data conversion for individual components. The glue
software schedules time-constrained actions and carries out the actual communication between components.

The functionality of the ICB is analogous to that of an object request broker (ORB). The ORB provides the capability
to generate the glue and wrappers necessary for objects written in different programming languages to communicate
transparently; the ICB provides the capability to generate the glue and wrappers necessary for components implemented in
diverse component models (and providing service guarantees) to collaborate across the Internet. An ORB defines language
mappings and object adapters. An ICB must provide component mappings and component model adapters. While the
ICB conceptually provides the capabilities of existing bridges (COM-CORBA for example), the ICB will provide key
features that are unique; it is designed to provide the auxiliary aspects of the Internet - collaboration between autonomous
environments, mobility and security. In addition, the UMM includes quality of service and service guarantees. The ICB, in
conjunction with head-hunters provide the infrastructure necessary for scalable, reliable, and secure collaborative business. using the Internet.

3 A Case Study. In order to explain the UMM and the proposed approach, below a case study from the domain of distributed information
filtering is presented. Although the case study uses a specific domain, the principles can be easily extended to other
application domains that involve the software realization of a DCS.

3.1 Distributed Information Filtering

It is desired to develop a global information filtering system, in which, users will be interested in receiving selected
information, based on their preferences, from scattered repositories. Usually, a fitering task involves contacting the
scattered resources, performing an initial search to gather a subset of documents, representing, classifying and presenting
based on the user profile. Many different methods are employed for the sub-tasks involved in filtering. Thus, it can be easily
envisioned that different components, each employing a different algorithm to perform these sub-tasks, will be scattered
across an interconnected system. Each component may belong to a different model, may quote different costs and offer
different qualities of service.

Hence, a typical distributed information filtering system consists of the following types of components: a) Domain
Component (DC), b) Wrapper Component (WC), c) Representer Component (RC), d) Classifier Component (CC), and e)
User Interaction Component (UIC). In addition to these domain-specific components, headhunter components (HC) and
the ICB are needed.

All these components, their aspects and characteristics need to be defined using UMM. For the sake of brevity, only
the complete description of the domain component (DC) is shown below.

3.2 Domain Component
The domain component is responsible for maintaining a repository of URLs of associated information sources for particular
type (e.g., text, structure, sequence) of information that needs filtering.

For example, the inherent attributes might consist of Author (name of the component developer), Version (current
version of the component), Date Deployed, Execution Environment Needed and Component Model (e.g., Java-RMI 1.2.2),
Validity (e.g., one month from the deployment), Atomic or Complex (indivisible or an amalgamation of other components,
e.g. atomic), Registrations (with which headhunters this component is registered, e.g., H1 - www.cs.iupui.edu/hl andSH2 - www. cis.uab.edu/h2).

An informal description of the functional part of a component may contain:

1. Computational Task Description -- e.g., searching a selected set of databases over the Internet.
2. Algorithm Used and its Complexity -- Webcrawling and 0(n-2), respectively.
3. Alternative Algorithms -- Indexing.
4. Expected Resources (best, average and worst-cases) -- multi-processor, uni-processor (300MHz
with an CPU utilization of 50%), and uni-processor (100MHz with CPU utilization of 99%), respectively.
5. Design Patterns Used (if any) -- Broker.
6. Known Usages -- for assembling an up-to-date listing containing addresses of known information
repositories for a particular domain.
7. Aliases-- such a component is usually called a Pro-active Agent.
8. Multi-level contracts:
e.g., for a function like List getURLs (Domain inputDomain, Compensation inputCost), the behavioral
contract could specify the pre-condition to be (valid Domain Name and cost), post-condition to be:
if successful (activeClientThreads++ and cost+=inputCost)
else (raise DomainNotKnownException and InvalidCostException)
and the invariant could be (ListOfURLs > 1). Also, for the same function, the concurrency contract
could specify (maximum number of active threads allowed = 50).

The cooperation attributes of the domain component may consist of 1) expected collaborators UIC, WC, HC, TC and
RC, 2) pre-processing collaborators HC and TC, and 3) post-processing collaborators RC and UIC.

The auxiliary attributes of the domain component are 1) fault-tolerant attributes, e.g., check-pointing versions, 2)
security attributes, e.g., simple encryption, and 3) mobility attributes, e.g.. "not mobile."

For the domain component, the QoS parameters may contain 1) number of available URL's, 2) ranking of URL's, and
3) average rate of URL collection.

A component developer may offer several possible levels of QoS, e.g., LI) novice (number of URL's < 50 and no ranking
of URL's and average rate of URL collection > 1 week and average latency _> 2 minutes), L2) intermediate (number of
URL's < 500 and simple ranking of URL's and average rate of URL collection > 3 days and average latency > 1 minute),. and L3) expert (number of URL's < 1500 and advanced ranking of URL's and average rate of URL collection > 1 day and
average latency > 5 seconds).

Compon nt Implementation

Domain Knowledge Base

Cotoputationa
UMM Specification UMM Interface

Of a • NL - Generator Behavioral
Cmoetp TGQ Validation Sisaor? Yes

,Qo Component

is Ready
-- ., [for

No Deployment

(Collaboration
Refine the UMM Specification and the Implementation of the Component with

Headhunters)

Figure 1: The Component Development and Deployment Process in UMM

The expected compensations for the above levels in terms of the number of URLs could be 1) Li > 100 and < 200, 2)
L2 > 200 and < 400, and 3) L3 > 400 and < 600.

4 Component and System Generation Using UMM Framework

The development of a software solution, using the UMM approach, for a DCS has two levels: a) component level - in this
level, different components are created by developers, tested and verified from the point of view of QoS, and then deployed
on the network, and b) system level - this level concentrates on assembling a collection of components, each with a specific
functionality and QoS, and semi-automatically generates the software solution for the particular DCS under consideration.O These two levels and associated processes are described below.

4.1 Component Development and Deployment Process

The component development and deployment process is depicted in Figure 1. As seen in the figure, this process starts with
a UMM specification of a component (from a particular domain). This specification is in a natural-language format, as
illustrated in the previous section. This informal specification is then refined into a formal specification. The refinement
is based upon the theory of Two-Level Grammar (TLG) natural language specifications [3, 231, and is achieved by the
use of conventional natural language processing techniques (e.g. see [7]) and a domain (such as information filtering)
knowledge base. TLG specifications allow for the generation of the interface (possibly multi-level) for a component. This
interface incorporates all the aspects of the component, as required by the UMM. The developer provides the necessary
implementation for the computational, behavioral, and QoS methods. This process is followed by the QoS validation. If the
results are satisfactory (as required by the QoS criteria) then the component is deployed on the network and eventually,
it is discovered by one or more headhunters. If the QoS constraints are not met then the developer refines the UMM
specification and/or the implementation and the cycle repeats.

4.2 Formal Specification of Components in UMM

Since the UMM specifications are informally indicated in a natural language like style, our approach is to translate this
natural language specification into a more formal specification using TLG. TLG is a formal notation based upon natural
language and the functional, logic, and object-oriented programming paradigms. The name "two-level" in Two-Level
Grammar comes from the fact that TLG consists of two context-free grammars, one corresponding to a set of type
declarations and the other a set of function definitions operating on those types. These type and function definitions axe
incorporated into a class which allows for new types to be created.

The type declarations of a TLG program define the domains of the functions and allow strong typing of identifiers used
in the function definitions. On the other hand, function definitions may be given without precisely defined domains for
a more flexible specification approach. This framework consists of a knowledge-base which establishes a context for the
natural language text to be used in the specification under a particular domain model, in this case information filtering.. This allows the TLG to be translated into internal representations such as predicate logic, the natural representation for
TLG, event grammars, or multi-level Java interfaces taking the form of the UMM specification template. For the case

study, we may use a TLG class to describe the component structure and functionality as elaborated in the following
subsections.

4.2.1 Component Structure Specification

Syntactically, TLG type declarations are similar to those in other languages. Types are capitalized whereas constants
begin with lower case letters. The usual primitive types, such as Integer, Float, Boolean, and String are present as are
list constructors based upon regular expression notation, e.g. {X}* and {Xj+ mean 0 or more and 1 or more occurrences
of X, respectively.

The types of the domain component in our information filtering system are defined in the following way in TLG.

Component :: DomainComponent; WrapperComponent; RepresentationComponent; ClassificationComponent;
UserInteractionComponent; HeadhunterComponent; ICB.

DomainComponent :: Name, InformalDescription, Attributes, Service.
Name :: dc.
Attributes :: ComputationalAttributes, CooperationAttributes, AuxiliaryAttributes.
ComputationalAttributes :: InherentAttributes, FunctionalAttributes.
InherentAttributes :: Author, Version, DateDeployed, ExecutionEnvironment,

ComponentModel, Validity, Structure, Registrations.
FunctionalAttributes :: TaskDescription, AlgorithmAndComplexity,

Alternatives, Resources, DesignPatterns, Usages, Aliases, FunctionsAndContracts.
AlgorithmAndComplexity :: webcrawling, n-2;
Alternatives :: {AlgorithmAndComplexity}*.
Resource :: Architecture, Speed, Load.
Architecture :: uni-processor; multi-processor.
Speed Integer.
Load Integer.
DesignPatterns :: broker;
Aliases :: pro-active agent;
FunctionAndContract :: Function, BehavioralContract, ConcurrencyContract.
Function ::
BehavioralContract Precondition, Invariant, Postcondition.
ConcurrencyContract single threaded; maximum number of active threads allowed = Integer;
CooperationAttributes ExpectedCollaborators, PreprocessingCollaborators, PostprocessingCollaborators.
ExpectedCollaborator uic; wc; hc; tc; rc.
PreprocessingCollaborator hc; tc.
PostprocessingCollaborator rc; uic.
AuxiliaryAttribute :: FaultTolerantAttribute; SecurityAttribute; MobilityAttribute.
FaultTolerantAttribute :: check-pointing versions;
SecurityAttribute simple encryption;
MobilityAttribute mobile; not mobile.
Service :: ExecutionRate, ParallelismConstraint, Priority, Latency, Capacity, Availability,

OrderingConstraints, QualityOfResultsReturned, ResourcesAvailable.
ExecutionRate :: Float.
ParallelismConstraint :: synchronous; asynchronous.
Priority Integer.
Latency AverageRateOfURLCollection.
AverageRateOfURLCollection :: Float.
Capacity :: NumberOfAvailableURLs.
NumberOfAvailableURLs :: Integer.
Availability :: Float.
OrderingConstraint :: Boolean.
QualityOfResultsReturned :: {URL}+.
ResourcesAvailable HardwareResources, SoftwareResources.
HardwareResources ..

SoftwareResources ..

The remaining components (e.g., wrapper, representation, etc.) may be described in a similar manner. All domains not
specified explicitly in the above example are assumed to be of type String, with the exception of Function which may take
the form of an interface definition in a programming language such as Java. Using standard natural language processing
techniques [7], the UMM specification may be automatically refined into this TLG specification, with user assistance as

needed to clarify ambiguities. The process is facilitated by the presence of a knowledge base which understands the domain
of information filtering from the point of view of vocabulary which may be used in making the original UMM specification.

. 4.2.2 Component Functionality Specification

The second level of the TLG specification is for function declarations. These resemble logical rules in logic programming
with variables coming from the domains established in the type declarations. For the Domain Component example, the
levels of Quality of Service may be specified as follows.

number of urls size of Quality~fResultsReturned.
average latency
no ranking of urls
simple ranking of urls
advanced ranking of urls
average latency : ...
qos level 1 is novice : number of urls < 50, no ranking of urls,

AverageRateofURLCollection >= 1 week, average latency >= 2 minutes.
qos level 2 is intermediate : number of urls < 500, simple ranking of urls,

AverageRateofURLCollection >= 3 days, average latency >= 1 minute.
qos level 3 is expert : number of urls < 1500, advanced ranking of urls,

AverageRateofURLCollection >= 1 day, average latency >= 5 seconds.

Each rule defines how the particular entity is to be computed. As these rules are normally part of a class definition
encapsulating a corresponding set of type declarations, each rule has access to the data specified in the type declarations.
These natural language like rules may be further refined into a more formal specification, e.g. using event grammars.

4.3 QoS Guarantee of a Domain Component
For the case study, the event grammar to describe the system behavior is given below. The first part is the set of type
definitions and the second part is the description of computations over event traces implementing different QoS metrics.. exec-syst :: (request-sent I response.received)*
response-received :: (URL_detected I failed)

These type definitions describe the types of events which may occur as the system executes. The computations over these
events include verification that the number of URL's detected is less than 50 and also the latency (e.g., for all requests for
URL's, every response received occurs within 10 units of time). id is an event attribute which associates a unique identifier
between query attributes and corresponding responses. Both of these metrics yield Boolean values.

CARD [URL-detected from execsyst] < 50

Forall x : request-sent from exec-syst
Exists y response-received from exec-syst

id (x) = id (y) & begin-time (y) - endtime (x) < 10

4.4 Automated System Generation and Evaluation based on QoS
In general, different developers will provide on the Internet a variety of possibly heterogeneous components oriented
towards a specific problem domain. Once all the components necessary for implementing a specified distributed system
are available, then the task is to assemble them. Figure 2 shows a process to accomplish this. The developer of the desired
distributed system presents to this process a system query, in a structured form of natural language, that describes the
required characteristics of the distributed system. For example, such a query might be a request to assemble an information
filtering system. The natural language processor (NLP) processes the query. It does this aided by the domain knowledge
(such as key concepts in the filtering domain) and a knowledge-base containing the UMM description (in the form of a
TLG) of the components for that domain. The result is a formal UMM specification that will be used by headhunters
for component searches and as an input to the system assembly step. This formal UMM specification will be a basis for
generating a set of test cases to determine whether or not an assembly satisfies the desired QoS. The framework, with the
help of the infrastructure described in Section 2.2.3, collects a set of potential components for that domain, each of which
meets the QoS requirement specified by the developer. From these, the developer, or a program acting as a proxy of the
developer, selects some components. These components along with the component broker and appropriate adapters (if
needed) form a software implementation of the distributed system. Next this implementation is tested using event traces
and the set of test cases to verify that it meets the desired QoS criteria. If it does not, it is discarded. After that, another
implementation is chosen from the component collection. This process is repeated until an optimal (with respect to the
QoS) implementation is found, or until the collection is exhausted. In the latter case, the process may request additional

UMM T-G olContponents Tai. Kno. edge Base

System Qusery NLP -olr

(Nataral Components Espetimentaion

Language) (including Glues and Wrappers)

Headhunters
M t h

N. -- Refine the Query. CrtcriP

SYes

System Assembled from Components

System is Ready for Deployment

Figure 2: The Iterative System Integration Process in UMM

components or it may attempt to refine the query by adding more information about the desired solution from the problem
domain. Once a satisfactory implementation is found, it is ready for deployment.

5 Conclusion
This paper has presented a framework that allows an interoperation of heterogeneous and distributed software components.
The software solutions for future DCS will require either automatic or semi-automatic integration of software components,
while abiding with the QoS constraints advertised by each component and the collection of components. The result of using
UMM and the associated tools is a semi-automatic construction of a distributed system. Glue and wrapper technology. allows a seamless integration of heterogeneous components and the formal specification of all aspects of each component will
eliminate ambiguity while detecting and using these components. The UMM does not consider network failures or other
considerations related to the hardware infrastructure, however, these could be integrated into the QoS level of components.
The UMM approach to validating QoS is to use event grammar to calculate QoS metrics over run-time behavior. The
QoS metrics are then used as a criteria for an iterative process of assembling the resulting system as shown in Section 4.4.
UMM also provides an opportunity to bridge gaps that currently exist in the standards arena. Although, the paper has
only presented a case study from the domain of distributed information filtering, the principles of UMM may be applied
to other distributed application domains. Future work includes refinement of the UMM feature thesaurus and methods
for translating UMM specifications into Two-Level Grammar, refining the head-hunter mechanism, developing Quality of
Service metrics for components and systems, and development of generation mechanisms for domain-specific component
reuse.

References
[1] Auguston, M. A Language for Debugging Automation. In Proceedings of 6th International Conference on Software

Engineering and Knowledge Engineering, pages 108-115, 1994.

[2] Beuguard, A., Jezequel, J., Plouzeau, N. and Watkins, D. Making Components Contract Aware. IEEE Computer,
32(7):38-45, July 1999.

[3) Barrett R. Bryant. Object-Oriented Natural Language Requirements Specification. In Proceedings of A CSC 2000,
the 23rd Australasian Computer Science Conference, January 31-February 4, 2000, Canberra, Australia, pages 24-30,
January 2000.

[41 California Institute of Technology. Caltech Infospheres On-line Documentation,
URL:- http://www.infospheres.caltech.edu/, 1998.

[5] Fox, G. The Document Object Model Universal Access Other Objects CORBA XML Jini JavaScript etc.
http://www.npac.syr.edu/users/gcf/msrcobjectsapril99, 1999.S[6] Israel, B. and Kaiser, G. Coordinating Distributed Components Over the Internet. IEEE Internet Computing, pages
83-86, 2(2), 1998.

[7] Jurafsky, D. and Martin, J. H. Speech and Language Processing. Prentice Hall, 2000.

[81 Kotz, D., Gray, R., Nog, S., Rus, D., Chawla, S. and Cybenko, G. Agent TCL: Targetting the Needs of Mobile
Computers. IEEE Internet Computing, pages 58-67, 1(4), 1997.

[9] Luqi, Berzins, V., Ge, J., Shing, M., Auguston, M., Bryant, B. R. and Kin, B. K. DCAPS - Architecture for Distributed
Computer Aided Prototyping System. In Proceedings of RSP 2001, the 12th International Workshop on Rapid System
Prototyping, 2001.

[10] Manola, F. Technologies for a Web Object Model. IEEE Internet Computing, 3(1):38-47, January-February 1999.

[11] Microsoft Corporation. DCOM Specifications, URL:- http://www.microsoft.com/oledev/olecom, 1998.

[12] Object Management Group. XML Metadata Interchange. Technical report, Object Management Group Document
No. ad/98-10-05, October 1998.

[13] Object Management Group. CORBA Components. Technical report, Object Management Group TC Document
orbos/99-02-05, March 1999.

[14] Object Management Group. Meta Object Facility (MOF) Specification, Version 1.3. Technical report, Object Man-
agement Group, March 2000.

[15] Object Management Group. Model Driven Architecture: A Technical Perspective. Technical report, Object Manage-
ment Group Document No. ab/2001-02-01, February 2001.

[16] Orfali R, and Harkey, D. Client/Server Programming with JAVA and CORBA. John Wiley & Sons, Inc., 1997.

[17] Raje, R. UMM: Unified Meta-object Model for Open Distributed Systems. In Proceedings of the fourth IEEE
International Conference on Algorithms and Architecture for Parallel Processing (ICA3PP'2000), 2000.

[18] Rogerson, D. Inside COM. Microsoft Press, 1996.

[191 Rumbaugh, J., Jacobson, I. and Booch, G. The Unified Modeling Language Reference Manual. Addison-Wesley, 1998.

[20] Siegel, J. CORBA Fundamentals and Programming. John Wiley & Sons, Inc., 1996.

[21] The Globus Project. Globus Website, URL:- http://unnw.globus.org/, 2000.

[22] University of Virginia. Legion Project, URL:- http://www.cs.virginia.edu/ legion, 1999.

[23] van Wijngaarden, A. Orthogonal Design and Description of a Formal Language. Technical report, Mathematisch
Centrum, Amsterdam, 1965.

Two-Level Grammar as an Object-Oriented Requirements
Specification Language *

Barrett R. Bryant Beum-Seuk Lee
Department of Computer and Information Sciences

The University of Alabama at Birmingham
1300 University Boulevard

Birmingham, AL 35294-1170, U. S. A.
{bryant, leebs}@cis.uab.edu

Abstract ware system requirements. Informal specifications in
NL must be turned into more formal designs on the way

Two-Level Grammar (TLG) is proposed as an to a complete implementation. These formal require-
object-oriented requirements specification language with ments are necessary not only for the rapid prototyping
a natural language (NL) style but sufficiently for- of the evolving software systems but also to provide
mal to allow automatic transformation of the TLG a standard reference model upon which all successive
specification into formal specifications in VDM++, implementations should be constructed. Since object-
an object-oriented version of the Vienna Development oriented modeling using UML and associated tools is
Method. The VDM++ specification may be further now a standard for software system design, there is a
transformed into JavaTM code or integrated with the need for a requirements specification language which
Unified Modeling Language (UML) using the IFAD may be both conveniently used to express the origi-
VDM ToolboxTM. The translation into an executable nal NL specification but also mapped into an object-
programming language facilitates rapid prototyping of oriented design. Since objects are already concepts in
TLG specifications and the integration with UML al- the domain of an NL vocabulary, an object-oriented
lows TLG specification to be used in conjunction with design has the potential for most closely matching a
software systems being constructed using UML. This requirements specification in the user's vocabulary. In
software specification approach is supported by a speci- fact, one technique of object-oriented analysis is to de-
fication development environment (SDE) for construct- termine the objects of the problem domain using nouns
ing TLG specifications and a natural language process- in the requirements specification and determine the in-
ing system to assist in translating an NL requirements teractions between objects and their associated oper-
specification into TLG. The system described is a use- ations using verbs and their direct objects [2]. While
ful and constructive tool for automating the production objects may be more natural to describe in a require-
of software systems from NL specifications. ments specification, some additional tools are needed

to facilitate the mapping between the user's descrip-
tion of requirements and the actual design. Toward

1. Introduction this end, we have developed a requirements specifica-
tion language based upon Two-Level Grammar (TLG)

Despite a wide variety of formal specification lan- [13] with the following advantages:

guages [1] and modeling languages such as the Uni- 1. The NL nature of a TLG specification makes it
fled Modeling Language (UML) [11], natural language very understandable and useful as a communica-
(NL) remains the method of choice for describing soft- tion medium between users, designers, and imple-

mentors of the software system.
• This material is based upon work supported by, or in part

by, the U. S. Army Research Laboratory and the U. S. Army Re- 2. Despite an apparent NL quality, the TLG notation
search Office under contract/grant number DAAD19-00-1-0350
nd by the U. S. Office of Naval Research under award number is sufficiently formal to allow formal specifications

W0 0014-01-1-0746. to be constructed using the notation.

COMPUTET
SOCIETY

3. TLG specifications are wide-spectrum, meaning where each data-obj ect-i is a combination of domain. that the specification may be very detailed for im- identifiers, singleton data objects, and lists of data ob-
plementation as well as very general for design. jects, which taken together as a union form the type

of Identifier-i, Identifier-2, ... , Identifier-m.
4. We have developed implementation techniques to If n=l, then the domain is a true singleton data ob-

rapidly prototype the TLG specifications, when a ject, whereas if n>1, then the domain is a set of the
sufficient level of detail is specified, by means of n objects. Syntactically, domain identifiers are capi-
translation into efficient executable code in object- talized, with underscores or additional capitalizations
oriented programming languages. of successive words for readability (e.g., IntegerList,

Symbol-Table, etc.), and singleton data objects are
This paper describes the details of the TLG specifica- lists of NL words written entirely in lower case letters
tion language and its implementation, including type (e.g., sorted list). A list, set or bag structure is de-
system, object-orientation, and natural language base, noted by a regular expression or by following a domain
and shows how TLG is mapped into VDM++. identifier with the suffix List, Set, or Bag, respectively.

Following conventional regular set notation, * implies
a list of zero or more elements while + denotes a list

2. Two-Level Grammar of one or more elements. Furthermore, there exists
a predefined environment of primitive types, such as

Two-level Grammar (TLG, also called W-grammar) Integer, Boolean, Character, String, etc. To clarify
was originally developed as a specification language for these, consider the following examples.
programming language syntax and semantics, and later Person first name String middle initial Character
used as an executable specification language [4], and as last name String.
the basis for conversion from requirements expressed in Persons PersonList.
natural language into a formal specification [3]. People {first name String middle initial Character

last name String}*.
Symbol-Table :: {id Identifier type Type value Integer}+.

2.1. Language Description Person denotes a product of String, Character, and
* String types, each tagged with an appropriate iden-

The name "two-level" in Two-Level Grammar tifier to establish context. The types Persons and
comes from the fact that TLG consists of two context- People are equivalent, as is the type {Person}*.
free grammars defining the set of type domains and Symbol-Table denotes a compiler symbol table config-
the set of function definitions operating on those ured as a list of records, each with three fields: id, type
domains, respectively. Note that while we use the and value, with corresponding types Identifier,
term "domain" in a type-theoretic context, the notion Type, and Integer (the first two of these are not stan-
can be scaled up to a much larger context as in dard TLG types and so should be explicitly declared).
domain of "objects." These grammars may be defined Each type name which appears on the right side of
in the context of a class in which case the type a declaration rule represents a value of that type, i.
domains define the instance variables of the class and e., type names may be used as variables, making type
the function definitions define the methods of the class, declarations unnecessary although they enhance read-

ability.
2.1.1. Types. The type declarations of a TLG pro- These examples have illustrated list structured types
gram define the domains of the functions and allow which essentially correspond to regular sets in formal
strong typing of identifiers used in the function defini- language theory. Type checking then corresponds to
tions. In traditional TLG literature, these declarations simple pattern matching between regular sets. Deter-
are referred to as meta-rules. The function domains of mining the equivalence between two types is always de-
TLG may be formally structured as linear data struc- cidable and checking the type of a value is equivalent
tures such as lists, sets, bags, or singleton data objects, to executing a deterministic finite automaton (O(n)).
or be configured as tree-structured data objects. The The main difference between list structures and tree
standard structured data types of product domain and structured domains in terms of their declaration is
sum domain may be treated as special cases of these. whether the defining domain identifier declaration is

Domain declarations have the following form: recursive or not. Recursive domains are more pow-
erful in that they allow "context-free" data types to

W entifier-1, Identifier-2, Identifier-m: be defined, such as expression strings with balanced
data-object-i; data-object-2; ... ; data-object-n. parentheses as in the following example:

COMPUTERSOCIETY

Expression :: (Expression). arithmetic calculations. In this case, only the last func-
The context-free grammars defining such data types tion call in a series should return such a value.
Wnay not be left recursive and must be unambiguous, An important aspect about TLG is that the
so as to allow proper parsing. Left recursion is not functions may be written at a very high level of
needed since regular expression notation may be used abstraction (e.g. compute the total mass and
in it's place. For example, instead of expressing: total cost) or embedded into a domain definition as
Expression :: Expression + Term I Term. in traditional object-oriented programs (e.g. compute
we may express: the TotalMass and TotalCost of This Part by
Expression :: Term J+ Term}*. computing the TotalMass and TotalCost of its

Type checking on tree structures corresponds to Subparts, which might be embedded as a method
pattern matching over context-free grammars, i.e., in a Part class). The use of NL in the function
parsing. Since we have imposed the restrictions of may be regarded as a form of infix notation for
no left recursion and no ambiguity, we can guarantee functions, in contrast with the customary prefix forms
that type checking a value may be done in 0(n) time of most other programming languages. It is similar
using conventional context-free parsing techniques to multi-argument message selectors in Smalltalk but
(e.g. LL (k) parsing). However, we can not deter- provides even greater flexibility, including the presence
mine the equivalence of two tree structured types of logical variables, denoted by the use of domain
as equivalence of context-free grammars is undecidable. names (capitalized). This notation provides a highly

readable way of writing what is to be done and is
2.1.2. Functions. Function definitions comprise the wide-spectrum in the sense that "what is to be done"
operational part of a TLG specification. Their syn- may be expressed at multiple levels. The functions
tax allows for the semantics of the function to be ex- typically return a Boolean value as the main operation
pressed using a structured form of natural language. is to instantiate the logical variables, but simple
In traditional TLG literature, these are referred to as function values such as arithmetic expressions may
hyper-rules. Function definitions take the forms: also be computed. These function definitions form

the basis for the initial design. In an implementation,
function signature. they may be represented by functions in traditional

s functionga.ature object-oriented programming languages, such as Java.
A function may be defined as a rule. For example,

where n>1. Function signatures are a combination we could define an expensive part using the syntax
of NL words and domain identifiers, corresponding to Expensive part : part with an imported base
variables in a logic program. Some of these variables part and cost more than $100. or alternatively we
will typically be input variables and some will be out- could write in more natural form Expensive parts
put variables, whose values are instantiated at the con- are parts with an imported base part and cost
clusion of the function call. Therefore, functions usu- more than $100. An implementation would trans-
ally return values through the output variables rather form the second form into the first, and even that form
than directly, in which case the direct return value is into the more formal rule for Part objects: expensive
considered as a Boolean true or false. true means BasePart imported, Cost > 100.
that control may pass to the next function call, while To explain the operational semantics of TLG func-
false means the rule has failed and an alternative rule tion rules, note that each function call on the right
should be tried if possible. Alternative rules have the hand side of a function definition should correspond
same format as that given above. If multiple function to a function signature defined within the scope of
rules have the same signature, then the multiple left the TLG program or be a special operation such as a
hand sides may be combined with a ; separator, as in: Boolean comparison, assignment statement, or if-then-

else statement. Every domain identifier with the same
function signature name is instantiated to the same value within a func-

FunctionCall-i1, FanctionCall-12, FunctionCall-lj; tion invocation. This is called consistent substitution.
FunctionCall-21, FunctionCall-22, .. ,FunctionCall-2k;t.t.onIf variables have the same root name but are numbered,

FunctionCall-ni, FunctionCall-n2, FunctionCall-nm. then the numbers are used to distinguish between vari-
ables. A numbered variable Vi will then be different

where there are n alternatives, each having a varying from a variable V2 and the two can have different val-
number of function calls. Besides Boolean values, func- ues. However, they will be of the same type, namely
ions may return regular values, usually the result of type V. Once a variable has been assigned a value, it

COMPUTER
SOCIETY

may not be reassigned, unless it is an instance variable Integer IntegersGreater using Pivot:

tf a class, and even in this case, it would not be usual Integer > Pivot,

to do so in the same function. Each function definition split IntegerList into lists IntegersLess and

may therefore be thought of as a set of logical rules.
The function calls are executed in the order given in The two quick sort rules are mutually exclusive, but
the function definition. Functions may be recursive the second and third split rules may both match non-
with the expected operational behavior, empty lists. Each of these two split rules serves to dis-

Besides defined functions, TLG supports the tribute the Integer at the beginning of the list to the
usual arithmetic and Boolean operations, as well IntegersLess list or IntegersGreater list, depend-
as list comprehensions and iterators over lists. ing on its relationship to Pivot. The first function call
The syntax of a list comprehension is list all in each case serves as a guard to distinguish the two
Element from ElementListl such that Element rules. This could have been written using an if-then-
condition giving ElementList2. This returns else construction, avoiding the need for the guard.

a list, ElementList2, of all Element values in
ElementList satisfying the given condition. The split Integer IntegerList into lists IntegerListl and

syntax of an iterator is select Element from IntegerList2 using Pivot :

o This re- split IntegerList into lists IntegersLess andElementList with Element condition. InegrsretrssigrivtIntegersGreater using Pivot,

turns the first Element from ElementList which if Integer <- Pivot then begin
satisfies the condition. IntegerListl : Integer IntegersLess,

To explain the language further, consider the follow- IntegerList2 : IntegersGreater,
end

ing examples. else begin
E le 1. Palindrome. IntegerListl : IntegersLess,

xampe IntegerList2 : Integer IntegersGreater,

end.
Character is a palindrome.
Character String Character is a palindrome : This imperative style of writing TLG's includes the

String is a palindrome. begin-end grouping block and assignment statements.

* his TLG specification has no explicit type declara- The split rule may be eliminated completelyW spbiiato usin lisici copehninstpetrin h
tions since the function rules use the type names di- by using list comprehensions to determine the
rectly as variables. The two function rules are mutu- IntegersLess and IntegersGreater, as shown below.

ally exclusive, the first handling single characters and
the second handling strings of two or more characters, quick sort Pivot IntegerList into SortedIntegersLess

Pivot SortedIntegersGreater
The second rule matches if and only if the first and last list all Integer from IntegerList such that

characters of the string argument are the same. Integer <- Pivot giving IntegersLess,
quick sort IntegersLess into SortedIntegersLess,

Example 2. Quick Sort. list all Integer from IntegerList such that
Integer > Pivot giving IntegersGreater,

Pivot :: Integer. quick sort IntegersGreater into SortedIntegersGreater.
IntegersLess, IntegersGreater, SortedIntegersLess,

SortedIntegersGreater :: IntegerList. Note that the variable Integer appearing in the list
all function is not actually instantiated and so may

quick sort Empty into Empty. be used in both list all functions without confusion.
quick sort Pivot IntegerList into SortedIntegersLess

Pivot SortedIntegersGreater : 2.1.3. Classes. TLG domain declarations and associ-
split IntegerList into lists IntegersLess and ated functions may be structured into a class hierarchy

IntegersGreater using Pivot,
quick sort IntegersLess into SortedIntegersLess, supporting multiple inheritance. The syntax of TLG
quick sort IntegersGreater into SortedIntegersGreater. class definitions is:

split Empty into lists Empty and Empty using Pivot. class Identifier-i
[extends Identifier-2, ... , Identifier-n].

split Integer IntegerList into lists Integer IntegersLess {instance variable and method declarations}
and IntegersGreater using Pivot : end class [Identifier-i].

Integer <- Pivot,
split IntegerList into lists IntegersLess and Identifier-I is declared to be a class which inherits

IntegersGreater using Pivot. from classes Identifier-2, ... , Identifier-n. In the. lit Integer IntegerList into lists IntegersLess and above syntax, square brackets are used to indicate the

COMPUTER
SOCIETY

extends clause is optional so a class need not inherit Natural Language Requirements

rom any other class. The instance variables compris- C
A , Contextual Natural LanguageI g the class definition are declared using the domain PreS..ing

declarations described earlier. In general, the scope
of these domain declarations is limited to the class in Two-Lýevel Grammar

which they are defined, while the methods, correspond- Cla..., Object, d Functio.
ing to TLG function definitions, have scope anywhere
an object of the given class is referred to. These no- VrDM +

tions of scoping correspond to private and public access
respectively in object-oriented languages such as Java, IFAD VDMI Toolkit
and either scope may be declared explicitly or the scope . ",•
may be made protected. Methods are called by writing UriM Model Java Code

a sentence or phrase containing the object. The result
of the method call is to instantiate the logical variables Figure 1. Structure of Specification Develop-
occurring in the method definition. ment Environment

For every class, there are predefined methods begin-
ning with This which serve only to select the instance
variables of a class (e.g., This InstanceVariable re-
turns the value of InstanceVariable). This serves These components are explained in the following sec-
as a special variable used within the method body to tions in terms of an example, the Automatic Teller Ma-
denote the object to which the method is being ap- chine (ATM) requirements specification below.
plied. Likewise, for every instance variable of simple The bank keeps the list of accounts.

type there are get and set methods to access or mod- Each account has three integer data fields; ID, PIN, and
ify that variable. For every instance variable of list balance. The ATM machine has 3 service types; witbdraw,

type, there are add and remove methods. These are deposit, and balance check. For each service first it

assumed and do not need to be explicitly defined. verifies ID and PIN from the bank.

TLG class declarations serve to encapsulate the Withdraw service withdraws an amount from the account of

LG domain declarations and function definitions. ID with PIN in the bank in the following sequence:

O fhe class hierarchy which is resident in TLG is a small First it gets the balance of the account of ID from
the bank, if the amount is less than or equal to theforest of built-in classes, such as integers, lists, etc. The balance then it decreases the balance by Amount,

"main" program is nothing more than a set of object updates the balance of the account of ID in the bank,

declarations using the existing class identifiers as do- and then outputs the new balance.

main names and a "query" of the appropriate methods. Deposit service deposits an amount to the account of ID

with PIN in the bank in the following sequence:
First it gets the balance of the account of ID from the
bank, it increases the balance by Amount, updates the3. Implementation balance of the account of ID in the bank, and then

outputs the new balance.

To effectively use TLG in the requirements specifica- Balance check service checks the balance of the account

tion process, we have developed a Specification Devel- of ID with PIN in Bank in the following order:

opment Environment (SDE) which facilitates the con- It gets the balance of the account of ID from the bank,

struction of TLG specifications from requirements doc- and then outputs the balance.

uments expressed in natural language, and then trans- Transfer service withdraws an amount from the account of

lates TLG specifications into executable code. NL re- IDI with PIN in the bank and deposits the amount to the

quirements are translated into TLG through Contex- account of ID2.
tual Natural Language Processing (CNLP) [10] which
constructs a knowledge representation of the require- 3.1. Processing NL Requirements Specifications
ments which may be expressed using TLG. The TLG is
then translated into VDM++ [5], the object-oriented The SDE has NL parsing capabilities as well as a
extension of the Vienna Development Method (VDM) lexicon to aid in classification of words into nouns (ob-
Specification Language (VDM-SL) [9]. The IFAD jects) and verbs (operations on objects) and their re-
VDM Toolbox [8] is then used to generate code in an lationship. Since all domain knowledge is specified by
object-oriented programming language such as Java. the domain definitions of the specification, the require-

he complete system structure is shown in Figure 1. ments written by the user can be parsed to determine

COMPUTER
SOCIETY

the object being acted upon and the operation needed get account from Bank using Id and Pin

to be performed. This initial analysis of the require- giving Account,

ments document provides the basis for further refine- withdraw Amount from Account giving Balance.

ment according to the syntax of Two-Level Grammar deposit Amount account of Id with Pin in Bank

function and domain definitions. The SDE analyzes giving Balance :
each function definition and attempts to classify from get account of Bank using Id and Pin
the NL text which domains were involved, including giving Account,

deposit Amount to Account giving Balance.
the primary domain, perhaps a class, the function be-
longs to. A sufficient degree of interaction with the check balance of Id with Pin in Bank giving Balance

user ensures a correct interpretation. Any aspect of get account of Bank using Id and Pin giving Account,

the specification which cannot be understood by the get balance of Account giving Balance.

system can be resolved through further querying of the transfer Amount from account of Idl with Pinl to

user. This may include the specification of additional account of Id2 in Bank :

domains and/or functions which make the specification withdraw Amount from account of Idi
with Pinl in Bank giving Balancel,more detailed. Once the system has "understood" the wit Pint in Bank giing Baganci,

get account of Bank using 1d2 giving Account2,

requirements that the user has specified, it can pro- deposit Amount to Account2 giving Balance.

ceed with the transformation into the design and the end class.

underlying design tool can further refine this into a
prototype implementation for the user to review. This It can be seen that the TLG is a structured form of the
process may be repeated iteratively until the require- original NL specification. The exact same vocabulary
ments have been sufficiently developed to satisfy both is used as it is extracted by the NL processing front end.
the user and designer. By "user" we refer to either the Additional information is added as needed to provide
end-user who has commissioned the system or require- object data member access, e.g., get functions to access
ments specification engineer working with the end-user. component objects.
The designer can then finalize the mapping of the re- Previous work in the area of NL specification of
quirements specification into the final design. Applying requirements includes a software reuse system which
this NL processing front end to the ATM requirements uses NL descriptions of library components to facil-

* pecification gives the following TLG. itate their selection for incorporation into an imple-
mentation [7], and "controlled natural language" [6],

class Account. which is NL of a specific syntax with all vocabulary
Id, Pin, Balance, Amount :: Integer; coming from a fixed domain. The latter system is able

to translate the controlled NL specifications into Pro-
withdraw Amount giving Balance alog so that they may be executed. We believe that

Balancel :- Balance - Amount, our object-oriented approach to this problem offers a
set balance to Balancel. number of advantages with respect to both formal spec-

deposit Amount giving Balancel ification and object-oriented modeling.
Balancel :- Balance + Amount,
set balance to Balancel. 3.2. Translation of TLG into VDM++

end class.

class Bank. VDM++ has been selected as the target spec-
Accounts :: AccountList. ification language for TLG because VDM++ has
Id, Pin :: Integer. many similarities in structure to TLG and also

get account using Id giving Account has tool support for analysis and code generation.
select Account from Accounts Although TLG and VDM++ are both formal spec-

with id of Account - Id. ification languages, the translation from TLG into
VDM++ is not simply a direct mapping between

gelect Account u figrdo i Accounts wthem. We will first give an overview of VDM++
select Account from Accounts with

id of Account = Id and pin of Account - Pin. and then explain how TLG is translated into VDM++.
end class.

3.2.1. VDM++. The structure of a VDM++ spec-
Id, Pin, Balance, Amount :: integer. ification is organized as a collection of classes which

take the following general form:

Swithdraw Amount from account of Id with Pin in Bank
giving Balance class identifier

COMPUTER
SOCIETY

[is subclass of identifier-i ... , identifier-n) turn many result values whereas VDM++ operations
value definitions only return a single value, these multiple result values
type definitions should be constructed into a product for the purpose
instance variable definitions
operation definitions of returning them as a single value. The mk_ opera-

end identifier tion accomplishes this. mk- is not needed if only one
return value is required. Figure 4 also shows the trans-

Value and type definitions define constants and types lation schemes for function calls. The declaration of a
that may be used in the class, respectively. VDM+u return variable occurs only if the variable has not been
types include the basic data types as well as compound declared previously either as a return variable of the
types in the form of sets, sequences, and maps. In- function definition in which the function call appears,

stance variable definitions are the state variables of the

class. Operation definitions correspond to methods. or as an instance variable of the class. Since function
g may return multiple values, the VDM++ operation

Operations have a signature and a body which may be return a uctofhe values w the be

an expression in the style of functional programming extracted into the individual values.

languages or a collection of imperative statements In addition to returning the values of result van-

with return statements to return the function values. ables, TLG functions will either succeed or fail, as in

VDM++ also includes the option of defining state logic programming predicates. Failure implies that no

invariants, and pre-conditions and post-conditions for result variables are instantiated. This situation must

operations. Synchronization of concurrent operations be detected by VDM++ operations corresponding to

and multi-threading are also provided for. At present those functions. In our generated VDM++ code, a

we do not use these features in our translation schemes. special Boolean variable is introduced into the state
of every object to indicate whether an operation

3.2.2. Translation Schemes. The translation of performed on that object succeeded or failed. If the

class definitions, including with inheritance, and com- peration th en so cdes oraion 0' tha

pound type declarations, may be described through the invoked 0, the operation that invoked 0', etc. That

tables shown in Figures 2 and 3. The translation of ba- is, this failure may be propagated to each previous

sic types is straightforward and so is not shown here. opertio uni iau te enteo to fall

a Type declarations in TLG specifications occur in class oran a ntive operation is paiv

Wdefinitions for two purposes: 1) to define an instance or an alternative operation is possible. An alternative
varibleof he cass an 2) o dfin varabls wich operation is one in which multiple rules are given for

variable of the class, and 2) to define variables which the same function signature. For function definitions
may be used in function definitions, either as function defined by several rules, TLG uses pattern matching

arguments or to calculate intermediate values. These detine which rulesa This pattern

are not difficult to distinguish as instance variables are matching is implemented in VDM++ by either com-

related only to the state of the object and so must be parisons in cases where the pattern is a simple data

used in function definitions other than as function ar- peior by VDM±± pattern in f compound

guments, typically a get or set operation. It is also data types. The examples in Figures 5 and 6 illustrate

straightforward to determine a variable used only for each case. Note that the factorial function is not

intermediate value calculation as such a variable will defined over all integers as the TLG rules will succeed

always be written before it is read - instance variables only for natural numbers. Therefore, the VDM++

must have some function which reads them only. operation may fail on a negative number argument,

A TLG function is translated into a VDM++ op- rendering the return value invalid. Functions calling

eration. TLG variables local to that function will be factorial must also check for this failure. This does

translated into VDM++ function local variables. Fig- not include the recursive casc e it can be detected

ure 4 indicates the general scheme for function defini- that factorial (n - 1) will never fail since n > 1.

tions, which essentially consist of a function signature

and a series of function calls. In these translations 3.2.3. Example. The VDM++ translation of our
schemes, Arg-1, Arg-2, etc., are the arguments to the running example, according to the rules given in the
function, Return-i, Return-2, etc., are the results of previous section, is shown below. As with the gener-
the function, and Arg-Type-i and Return-Type-i are ated TLG, this code has been distilled for readability.
their respective types. The declaration of a result vari-
able occurs only if the variable is not an instance vari- class Account

able of the class. This would not normally be the case instance variables

unless the function was a get method associated with id, pin, balance : int;

that instance variable. Since TLG functions may re- operations

COMPUTER
-------------------------.... -..... .. SOCIETY

,&,Simple Class Class With Inheritance
TLG VDM±+ TLG VDM++
class C. class C class SC class SC

instance variables extends C. is subclass of C
domain declarations variable declarations

operations end class, end C

function definitions operation definitions
end class, end C

Figure 2. Translation Schemes for Classes

TLG VDM++ Type
Data0bj DataTypeSet. Data0bj = set of DataType Set
DataObj DataTypeList. DataObj = seq of DataType Sequence
DataObj {DataType}*. DataObj = seq of DataType Sequence
DataObj {DataType}+. DataObj = seql of DataType Sequence
DataObj: DataTypel DataType2. DataObj = DataTypel * DataType2 Product
DataObj {DataNamel DataTypel DataDbj = DataNamel DataTypel Composite

DataName2 DataType2}. DataName2 : DataType2
DataObj :: DataTypel; DataType2. DataObj = DataTypel I DataType2 Union

Figure 3. Translation Schemes for Compound Data Types

Function Definitions Function Calls
TLG [TLG
f of Arg-1 and ... and Arg-n g of Arg-1 and ... and Arg-n

giving Return-1 and ... and Return-m :giving Return-1 and ... and Return-m

function calls VDM++
VDM++ dcl Return-1 : ReturnType-1;
f : ArgType-1 * ... * ArgType-n ==> ...

ReturnType-1 * ... * ReturnType-m dcl Return-m : ReturnType-m;
f (arg-1, ... , arg-n) == dcl Returns :

(dcl Return-1 ReturnType-1; ReturnType-i * ... ReturnType-m;
... Returns g (Arg-1, ... , Arg-n);
dcl Return-mr ReturnType-m; Return-i Returns . #1;
function calls ...
return ink_ (Return-i, ... , Return-m) Return-mr Returns . #t;

Figure 4. Translation Scheme for Functions

TLG VDM++
factorial of 0 : 1. factorial : int => int
factorial of Integer factorial (n) ==

Integer > i, if n = 0 then return I
Integer * factorial of (Integer - 1). elseif n > I then return n * factorial (n - I)

else (fail := true; return 0)

Figure 5. Simple Data Type Pattern Matching

COMPUTU
SOCIETY

TLG
quick sort Empty into Empty.
quick sort Pivot IntegerList into SortedIntegersLess Pivot SortedIntegersGreater

split IntegerList into lists IntegersLess and IntegersGreater using Pivot,
quick sort IntegersLess into SortedIntegersLess,
quick sort IntegersGreater into SortedIntegersGreater.

VDM++
quicksort : seq of int ==> seq of int
quicksort (pivotIntegerList) ==

cases pivotIntegerList
[0 -> return [0;
[pivot) - integerList->

(dcl splitReturns, integersLess, integersGreater : seq of int;
dcl sortedIntegersLess, sortedIntegersGreater : seq of int;
splitReturns split (integerList, pivot);
integersLess splitReturns . #1; integersGreater := splitReturns . #2;
sortedIntegersLess := quicksort (integersLess);
sortedIntegersGreater := quicksort (integersGreater);
return sortedIntegersLess - [pivot) - sortedIntegersGreater

end

Figure 6. Compound Data Type Pattern Matching

... getId, setId, getPin, setPin, etc.
class ATM

withdraw : int -- > int instance variables
withdraw (amount) -- bank : Bank;

(dcl amount : int;
if amount <- balance then operations

(dcl balancel : int; ... getBank and setBank ...
balancel :- balance - amount;
setBalance (balancel) withdraw : int * int * int > int

withdraw (amount, id, pin)
return balance (dcl account Account;

dcl balance int;
account : bank . getAccountByIdPin (id, pin);

deposit : int -> int balance : account . withdraw (amount);
deposit (amount) - return balance

(dcl amount, balancel : int;
balancel :- balance + amount;
setBalance (balancel); deposit : int * int * int > int
return balance deposit (amount, id, pin) -

(dcl account Account;
end Account dcl balance int;

account : bank . getAccountByIdPin (id, pin);
class Bank balance :- account . deposit (amount);

instance variables return balance
accounts : seq of Account;

operations checkBalance : int * int -- > int
addAccount and removeAccount ... checkfalance (id, pin) ==

(dcl account Account;
getAccountById : int > Account dcl balance int;
getAccountById (id)-- ... account :-bank . getAccountByIdPin (id, pin);

balance : account . getBalance 0;
getAccountByIdPin : int * int -> Account return balance
getAccountByIdPin (id, pin) ...

end Bank

COMPUTER
SOCIETY

transfer : int * int * int * int => 0 References
* transfer (amount, idl, pinl, id2) -

(dcl account2 : Account; [Al and K. Perlyasamy. Specification of
dcl balance, balancel : int; [1] V.S. Alagar
balancel :w withdraw (amount, idi, pint); Software Systems. Springer-Verlag, 1998.
account2 :-bank . getAccountSyId (id2);
balance :- account2 . deposit (amount) [2] G. Booch. Object-Oriented Analysis and Design
return; with Applications. Benjamin/Cummings, 1994.

end ATM [3] B. R. Bryant. Object-Oriented Natural Language
Requirements Specification. Proc. ACSC 2000,

4. Summary and Conclusions 23rd Australasian Computer Science Conf., pages
24-30, 2000.

Two-Level Grammar has been presented as an [4] B. R. Bryant and A. Pan. Formal Specification
object-oriented requirements specification language of Software Systems Using Two-Level Grammar.
which is natural language-like in style but sufficiently Proc. COMPSAC '91, 15th Ann. Intl. Computer
formal to allow automatic transformation of the TLG Software and Applications Conf., pages 155-160,
specification into a VDM++ object-oriented formal 1991.
specification. The IFAD VDM Toolbox provides for
an integration of VDM++ with the Unified Model- [5] E. H. Diirr and J. van Katwijk. VDM±+ - A For-
ing Language (UML) [11] through a link between the mal Specification Language for Object-Oriented
Rational Rose 2 0 0 0 TM [12] implementation of UML Designs. Proc. TOOLS USA '92, 1992 Technology

and VDM++. This tool translates between UML and of Object-Oriented Languages and Systems USA

VDM++ and so supports round-trip engineering which Conf., pages 63-278, 1992.

may be iterative. Presently we use this in a single [6] N. E. Fhchs and R. Schwitter. Attempto Con-
direction, from TLG to VDM+÷ to UML. This ef- trolled English (ACE). Proc. CLAW '96, First
fectively allows for UML modeling of the TLG spec- Intl. Workshop Controlled Language Applications,

.cation and so is useful for integration with existing 1996.
~ML models. Rational Rose does provide an "Add-In"

mechanism with which we hope to have a direct inte- [7] M. Girardi and B. Ibrahim. A Software Reuse Sys-
gration with TLG in the future. The translation into tem Based on Natural Language Specifications.
an executable programming language using the IFAD Proc. ICCI '93, 5th Intl. Conf. Computing and
VDM++ to Java code generator facilitates rapid proto- Information, pages 507-511, 1993.
typing of TLG specifications. Our approach to software [8] WAD. The VDM++ Toolbox User Manual. Tech-
specification is supported by a specification develop- nical report, WAD (http: //www. ifMad. dk), 2000.
ment environment (SDE) for constructing TLG speci-
fications and a natural language processing system to [9] P. G. Larsen, et al. Vienna Development Method
assist in translating an NL requirements specification - Specification Language - Part I: Base Language.
into the TLG. The system is a useful and constructive Report, International Standard ISO/IEC 13817-1,
tool for automating the production of software systems December 1996.
from NL specifications.

At present the SDE exists only in prototype form [10] J. McCarthy. Notes on Formalizing Context. Tech-
but is able to handle simple NL specifications, as our nical report, Computer Science Department, Stan-
example illustrated. We are extending this system so ford University, Stanford, CA, 1993.
that more complex NL specifications may be handled. [11] Object Management Group. OMG Unified Model-
We would also like to automate the interaction between ing Language Specification, Version 1.3. Technical
our SDE and tools like Rational Rose directly, in ad- report, Object Management Group, June 1999.
dition to going through VDM++. This will give us
a complete visual modeling tool not only for object- [12] T. Quatrani. Visual Modeling with Rational Rose
oriented design but also for specification as well. 2000 and UML. Addison-Wesley, 2000.

[13] A. van Wijngaarden. Orthogonal Design and De-
Acknowledgements. The authors would like to scription of a Formal Language. Technical report,
hank IFAD for providing an academic license to the Mathematisch Centrum, Amsterdam, 1965.

AD VDM Toolbox in order to conduct this research.

COMPUTEP
SOCIETY

(Appeared in Concurrency and Computation: Practice and Experience, 2002; 14:1009-1034)

A Quality of Service-based Framework for Creating
Distributed Heterogeneous Software Components

Rajeev R. Raje1 Barrett R. Bryant 2 Andrew M. Olson' Mikhail Auguston3 Carol Burt2

Abstract

Component-based software development offers a promising solution for taming the complexity found
in today's distributed applications. Today's and future distributed software systems will certainly require
combining heterogeneous software components that are geographically dispersed. For the successful de-
ployment of such a software system, it is necessary that its realization, based on assembling heterogeneous
components, not only meets the functional requirements, but also satisfies the non-functional criteria such as
the desired QoS (quality of service). In this paper, a framework based on the notions of a meta-component
model, a generative domain model and QoS parameters is described. A formal specification based on Two-
Level Grammar is used to represent these notions in a tightly integrated way so that QoS becomes a part
of the generative domain model. A simple case study is described in the context of this framework.

Keywords: Distributed systems, Quality of Service, Generative Domain Models, Heterogeneous Components,
Formal methods, Two-Level Grammar.

1 Introduction. In the recent past, component-based software design has emerged as a viable and economical alternative
to the traditional software design process. The notion of independently created and deployed components,
with public interfaces and private implementations, loosely integrating with one another to realize a software
solution is appealing. It is even more so in the field of distributed computing, where the underlying hetero-
geneity can be masked by the use of a coalition of distributed software components. Due to the inherent
complexities of the distributed computing paradigm and due to the nascent nature of the component-based
approach in this context, the potential of this approach has yet to be fully exploited. Many challenging issues
need to be addressed in order to fully harness the potential of the component-based approach to distributed
systems. The prominent ones are: a) the creation of a formal meta-component model, b) a mechanism to
precisely describe the meta-model and associated features , c) the formalization of QoS (Quality of Service)
offered by components, and d) a mechanism to assure the specified QoS. Thus, a comprehensive frame-
work that will encompass these issues and aid the software developers is needed. In this paper, one such
framework (called UniFrame) is proposed and applied to a case study.

The rest of the paper is organized as follows. The next section contains a brief description of the
related efforts. It is followed by the details of Unified Meta-component Model, which accomplishes (a) and
(b) above, and a brief discussion of the Generative Domain Model (GDM), which provides the domain
knowledge necessary to support semi-automatic generation of component-based systems. The part of the

'Department of Computer and Information Science, Indiana University Purdue University Indianapolis, 723 W. Michigan
Street, SL 280, Indianapolis, IN 46202, USA, {rraje, aolson}@cs.iupui.edu, +1 317 274 5174/97332Department of Computer and Information Sciences, The University of Alabama at Birmingham, 1300 University Blvd.,
Birmingham, Alabama 35294-1170, USA, {bryant, cburt}@cis.uab.edu, +1 205 934 2213

3Department of Computer Science, New Mexico State University, Las Cruces, New Mexico 88003, USA, mikau@cs.nmsu.edu,
+1 505 646 5286

O1

framework that deals with Quality of Service (QoS) is described in section 4. Section 5 discusses Two-level
Grammar (TLG), which is a formal specification method that provides a unified way to express natural
language requirements, including QoS, and facilitates the semi-automatic generation of systems that satisfy
them. Section 6 describes a simple case study. It illustrates the UMM description of components in a query
to assemble a system from them, the TLG specifications for such components, and how to assemble them
into the requested system. It does not illustrate how the GDM represents a family of architectural design
specifications from which a TLG selects one appropriate for a given query. A short conclusion summarizes
the observations of the paper.

2 Related Work

2.1 Component Models

Several communities have provided component (and/or collaboration) models, interoperability protocols,
and directory services. These include the Object Management Group (OMG), World Wide Web Consor-
tium (W3C), Universal Description, Discovery, and Integration (UDDI), Java Community Process (JCP),
and Organization for the Advancement of Structured Information Standards (OASIS). The work of these
organizations and its relevance to this research is being monitored and reported in UniFrame publications
such as [11, 10]. The OMG's CORBA Component Model (CCMTM) [30] provides th specification for a
component framework (compatible with J2EETM - Java 2 Enterprise Edition) that enables th deployment
of containers for non-Java components that can interoperate with Enterprise Java Beans (EJB). The new
Model Driven Architecture (MDA) initiative is the way that the OMG will begin to standardize Platform
Independent Model (PIMs) that can be mapped to multiple Platform Specific Models (such as CORBA,
J2EE, Component Object Model (COMTM) [35], .NET [28], and/or Web Services) for implementation. This
approach holds promise for the standardization of components that could potentially be used in collabora-
tive environments as a result of their common semantic model. W3C has progressed from pure information. exchange to defining a messaging protocol using W3C standards (SOAP) and a service definition language
(WSDL), which form the foundation of the "Web Services" Architecture. However, W3C has not published
a component architecture.

There are also significant other research projects in this area; such as [29, 32], Web-component model/DOM [25],
Pragmatic component web [14], Hadas [19], Infospheres [12], Legion [40], and Globus [16]. Some of these are
language-centric, while others allow a limited interoperability. Some are general-purpose, i.e., not concen-
trating on any particular application domain, while others are domain-dependent. However, almost all of
these models do not assume the presence of others. Thus, the interoperability which they provide is limited
mainly to the underlying hardware, operating system and/or implementation languages. If component-
based distributed software systems are to become successful, then there is certainly a need for an approach
that will transcend this limited interoperability. One possible approach to achieve comprehensive interop-
erability is that of using a meta-model for heterogeneous distributed components.

2.2 Generative Programming

In [13] the generative programming paradigm is defined as: "Generative Programming is about manu-
facturing software products out of components in an automated way. It requires two steps: a) a design
and implementation of a generative domain model, representing a family of software systems (development
for reuse), this model includes also domain-specific software generator; b) given a particular requirements
specification, a highly customized and optimized end-product can be automatically manufactured from im-
plementation components by means of generation rules (development with reuse)". The notion of generative
programming is incorporated in the proposed approach as described in section 3.2.2.

2

2.3 Quality of Service (QOS)

Although QoS and its guarantees have been widely used in networking, not many attempts have been made
to incorporate QoS into component-based software systems. Quality Objects (QuO) [5] is a framework for
providing QoS to software applications composed of objects (especially CORBA-based objects) that are
distributed over wide area networks. QuO bridges the gap between the socket-level QoS and the distributed
object level QoS. QuO's emphasis is on specification, measuring, controlling, and adapting to changes
in QoS. RAPIDware [27] is an approach for component-based development of adaptable and dependable
middleware. It uses rigorous software development methods to support interactive applications executed
across heterogeneous networked environments. It focuses on specification, design, and use of component-
based middleware.

3 Unified Meta-Component Model and Generative Domain Model

3.1 Why a Meta-model?

Given the plethora of component-based models and noting the fact that components, by definition, are
independent of the implementation language, tools and the execution environment, it is necessary to an-
swer the questions: why is a meta-model needed for a seamless interoperation of distributed heterogeneous
components? and how would a meta-model assist in seamlessly integrating distributed heterogeneous soft-
ware components? The answer to these question lies in: a) in any organization, software systems undergo
changes and evolutions, b) local autonomy is an inherent characteristic of today's geographically (or logi-
cally) dispersed organizations, and c) if reliable software needs to be created for a distributed computing
system (DCS) by combining components, then the QoS offered by each component needs to become a
central theme of the software development approach.

The consequence of constant evolutions and changes is that there is a need to create prototypes rapidly
and experiment with them in an iterative manner. Thus, there is no alternative but to adhere to cyclic
(manual or semi-automatic) component-based software development for a DCS. However, the solution of
decreeing a common COTS environment, in an organization, is against the principle of local autonomy.
Hence, the development of a DCS in an organization will, most certainly, require creating an ensemble
of heterogeneous components, each adhering to some model. Also, every DCS is designed and developed
with a certain goal in mind, and usually that goal is associated with a certain perception of the quality (as
expected from the system) and related constraints.

Thus, there is a need for a comprehensive meta-model that will seamlessly encompass existing (and
future) heterogeneous components by capturing their necessary aspects, including the quality of service and
associated guarantees offered components. As distributed systems are becoming omni-present and many
of them are mission-critical, their software development should emphasize and integrate the QoS-oriented
theme.

For enterprise component solutions, the standards necessary to design systems using a meta-model that
can be realized in many diverse technologies is an area where significant standards work is now focused.
The recent shift in focus for the OMG to "Model Driven Architecture" (MDA) [31] is a recognition that
to create mechanized software for the collaboration and bridging of component architectures will require
standardization not only of infrastructure but also Business and Component Meta-Models. The need to
support the evolution of component models and to describe the capabilities of the models will be key to
realizing the full potential of an E-business economy.

3.2 Unified Meta-component Model (UMM) and Unified Approach (UA)

In [33, 34] a unified meta-component model (UMM) and a unified approach (UA) based on it, for distributed
component-based systems, are proposed. A brief description of UMM and UA is presented below. A more

3

' detailed discussion of UMM and UA is found in [33, 34].

3.2.1 UMM

The core parts of the UMM are: components, service and service guarantees, and infrastructure. The
innovative aspects of the UMM are in the structure of these parts and their inter-relations. UMM provides
an opportunity to bridge gaps that currently exist in the standards arena. For example, the CORBA
Component Model and J2EE component models are consistent, and yet, because of the absence of a formal
meta-model, it is difficult during the evolution of each to recognize when the boundaries that maintain
the consistency are crossed. Similarly, it has been demonstrated in numerous products that the COM and
CORBA component models are similar (in an abstract sense) enough to allow meaningful bridging. It is,
however, not possible to point to a meta-model that constrains the implementations of these technologies
so that bridging is assured in practice.
Component

In UMM, components are autonomous entities, whose implementations are non-uniform, i.e., each com-
ponent adheres to a distributed-component model but there is no notion of a unified implementation
framework. Each component has a state, an identity, a behavior, a well-defined interface and a private
implementation. In addition, each component has three aspects: 1) computational, 2) cooperative, and 3)
auxiliary.

The computational aspect reflects the task(s) a component carries out. In a DCS, components must
be able to 'understand' the functionality of other components. Thus, each UMM component supports the
introspection, by which it precisely describes its services to others. UMM takes a mixed approach to indicate
the computational aspect of a component - a simple textual part, called inherent attributes and a formal
precise part, called functional attributes. The inherent attributes contain the book-keeping information
about a component (e.g., author, version, etc.); while the functional part is formal and indicates precisely
the computation, its associated contracts and the level(s) of service the component offers. Both the inherent
and functional attributes are specified by the component's creator.

In UMM, components are always in the process of cooperating with each other. This is depicted in
the cooperative aspect of each component. Informally, the cooperative aspect of a component contains: i)
Pre-processing collaborators - other components on which this component depends, and ii) Post-processing
collaborators - other components that may depend on this component.

In addition to computation and cooperation, mobility, security, and fault tolerance are necessary features
of a DCS. The auxiliary aspect of a component addresses these features. In UMM, each component can
be potentially mobile. The mobility of the component is indicated as a mobility attribute. Similarly, the
security and fault-tolerant attributes of a component contain the necessary information about its security
and fault-tolerance features.
Service and Service Guarantees

A service offered by a component could be an intensive computational effort or an access to underlying
resources. In a DCS, it is natural to expect several choices for obtaining a specific service. Thus, each
component must be able to specify the quality of the service offered.

The QoS offered by each component depends upon the computation it performs, the algorithm used,
its expected computational effort, required resources, the motivation of the developer, and the dynamics of
supply and demand. The QoS is an indication given by an component, on behalf of its owner, about its
confidence to carry out the required services. The task of guaranteeing the necessary QoS is a key issue in
any quality-oriented framework. Section 4 discusses the solutions provided by the unified approach based
on UMM.
Infrastructure

Because local autonomy is inherent in a DCS, forcing every component developer to abide by certain rigid
rules is doomed to fail. UMM tackles the issue of non-uniformity with the assistance of the head-hunter and

4

Internet Component Broker. These are responsible for allowing a seamless integration of different component
models and sustaining cooperation among heterogeneous (adhering to different models) components.

The tasks of head-hunters are to detect the presence of new components in the search space, register
their functionalities, and attempt match-making between service producers and consumers. A head-hunter
is analogous to a binder or a trader in other models, with one difference - a trader is passive, while a
head-hunter is active. It attempts at discovering components and registering them. During the registration
process, a component informs the head-hunter about its aspects to be used during the matching process. A
component may register with multiple head-hunters. Head-hunters may cooperate with each other in order
to serve a large number of components.

Considering the heterogeneous nature of the components, it is conceivable that the software realiza-
tion of a distributed system will require an ensemble of components adhering to different models. This
requires a mediator, the Internet Component Broker, that will facilitate cooperation between heterogeneous
components.

The Internet Component Broker (ICB) acts as a translator between two heterogeneous components.
ICB utilizes adapter technology, each adapter component providing translation capabilities for specific
models. Thus, an adapter component's computational aspect indicates the models for which it provides
interoperability. It is expected that brokers are pervasive in an Internet environment, thus providing a
seamless integration of disparate components. Adapter components register with ICB and indicate their
specializations (which component models they can bridge efficiently). During a request from a seeker, the
head-hunter component not only searches for a provider, but also supplies the necessary details of an ICB.

The adapter components achieve interoperability using the principles of wrap and glue technology [24].
Wrappers provide a common message-passing interface for components that frees developers from the error
prone tasks of implementing interfaces and data conversions. The glue schedules time-constrained actions
and carries out the actual communication between components. The automatic generation of glue and
wrappers based on component specifications provides a reliable, flexible and cost-effective way to achieve
interoperability.

The functionality of the ICB is analogous to that of an object request broker (ORB). The ICB provides
the capability to generate the glue and wrappers necessary for components implemented in diverse compo-
nent models (and providing service guarantees) to collaborate across the Internet; the ORB does this only
at the level of objects written in different programming languages. An ORB defines language mappings and
object adapters. An ICB provides component mappings and model adapters. While the ICB conceptually
provides the capabilities of existing bridges (COM-CORBA for example), it has key features that are unique;
it is designed to encompass all the aspects of components and the QoS features and associated guarantees.
Thus, the ICB, in conjunction with head-hunters, provides an infrastructure necessary for scalable, reliable,
and secure collaborative computation for a DCS. A preliminary version of the resource discovery service,
that consists of ICBs and head-hunters, has been created and is discussed in [37, 38].

3.2.2 UA

The UA is based on the principles of UMM. The creation of a software solution for a DCS, using UA,
has two levels: a) component level - developers create components, test and validate the appropriate QoS
and deploy the components on the network, and b) system level - a collection of components, each with
a specific functionality and QoS, and a semi-automatic generation of a software solution for the particular
DCS is achieved. These two levels and associated processes are described below.
Component Development and Deployment Process

The component development and deployment process starts with a UMM requirements specification of a
component from a particular domain. This specification is in a natural language and indicates the functional
(i.e., computational, cooperative and auxiliary aspects) and non-functional (i.e., QoS constraints) features
of the component. This specification is then refined into a formal specification. The refinement is based
upon the theory of Two-Level Grammar (TLG) and natural language specifications [7, 8]. The refinement

Q5

is achieved by the use of conventional natural language processing techniques (e.g. [20]) with a domain
knowledge base [23] TLG specifications allow for the generation of the interface (possibly multi-level) for
a component. This interface incorporates all UMM-aspects of a component. The developer then provides
the implementation to all the methods indicated in the interface. This process is followed by the validation
against requirements specifications. If the results are satisfactory then it is deployed on the network and
is discovered by one or more head-hunters. If the component does not meet the requirement specifications
then the developer refines either the UMM requirements specification or the implementation and the cycle
repeats.
Formal Specification of Components in UMM

Since the UMM specifications are informally indicated in a natural language like style, UA aims at
translating these into more formal specifications using TLG. TLG is a formal notation based upon natural
language and the functional, logic, and object-oriented programming paradigms. The reason that TLG is
chosen is that it allows queries over the knowledge base to be expressed in a natural language like manner
which is consistent with the way in which UMM is expressed. TLG is then a framework under which natural
language may be used to both describe and inquire about the nature of components and systems. More
details of TLG, which facilitate a formal specification of components and queries, are described in section 5.
Automated System Generation

In general, different developers will provide on the Internet a variety of possibly heterogeneous compo-
nents oriented towards a specific problem domain. Once all the components necessary for implementing a
specified distributed system are available and a specific problem is formulated, then the task is to assemble
them into a solution. The proposed framework takes a pragmatic approach, based on Generative Pro-
gramming [4, 13], to component-based programming. It is assumed that the generation environment will
be built around a generative domain-specific model (GDM) supporting component-based system assembly.
The distinctive features of the proposed approach are as follows:

1. The developer of the desired distributed system presents to this process a system query, in a structured
form of natural language, that describes the required characteristics of the distributed system. The
query is processed using the domain knowledge (such as key concepts from a domain) and a knowledge-
base containing the UMM description (in the form of a TLG) of the components for that domain. From
this query a set of search parameters is generated which guides head-hunter agents for a component
search in the distributed environment.

2. The framework, with the help of the infrastructure, collects a set of potential components for that
domain, each of which meets the QoS requirement specified by the developer. After the components
are fetched, the system is assembled according to the generation rules embedded in the generative
domain model. Essentially, the generated code constitutes the glue/wrapper interface between the
components. The TLG formalism is used to describe the generative rules (see section 6 for further
discussion) and the output of the TLG will provide the desired target code (e.g., glue and wrappers
for components and necessary infrastructure for distributed run-time architecture).

3. Along with the generated system will be a formal UMM specification of the generated system so that
it may be used in subsequent assemblies. This formal UMM specification will also be a basis for
generating a set of test cases to determine whether or not an assembly satisfies the desired QoS.

4. The static QoS parameters are processed during generation time and hence will be processed by the
TLG directly. Dynamic QoS parameters result in instrumentation of generated target code based on
event grammars, which at run time will produce the corresponding QoS dynamic metrics.

To summarize, the inputs for the system assembly and generation step are: the query for the system
build, UMM descriptions of the components found by headhunters, and the QoS parameters for the system
build. The outputs are the generated code instrumented for the dynamic QoS metric evaluation and
auxiliary code needed to compile, assemble and run the system, and UMM description of the generated
system which makes it possible to add the new component to the component database. Two-Level Grammar

*6

is the formalism for representing UMM's, GDM's, QoS parameters, supporting queries, and generation rules.
Only the queries that have counterparts in the GDM are processed. The GDM contains generation rules
for system assembly from the components. The query language becomes an essential part of the proposed
approach since the query provides the input for component search via the headhunter mechanism and
following glue and wrapper generation. The query supplies the initial parameters for the headhunters to
search in the distributed environment and gives the input for the generation step itself.

The proposed approach to Generative Programming besides the domain-specific generative models in-
volves yet another dimension: components and their attributes found in the distributed environment. Since
the environment is changing, the results of a query depend on the component resources available. The
attributes found in the UMM descriptors of the fetched components determine the hierarchy of generation
rule calls and hence the architecture of the assembled system. This implies that the UMM descriptor has
to be generation-oriented, i.e. contain attributes specific for the generation needs. The generation rules
represent typical design patterns for the selected domain and more general software design patterns, e.g. as
advocated in [15].

QoS parameters given in the query provide yet another aspect for the generated code - the instrumenta-
tion necessary for the run-time QoS metrics evaluation. Static QoS parameters are processed at generation
time by corresponding rules within the domain model. Since dynamic QoS metrics can be calculated only
for particular inputs, in order to find the best possible approximation for the system, the following approach
is suggested. Based on the query or informal requirements, the user has to come up with a representative
set of test cases. Next the implementation is tested using the set of test cases to verify that it meets the
desired QoS criteria. If it does not, it is discarded. After that, another implementation is chosen from the
component collection. This process is repeated until an optimal (with respect to the QoS) implementation
is found, or until the collection is exhausted. In the latter case, the process may request additional com-
ponents or it may attempt to refine the query by adding more information about the desired solution from
the problem domain. If a satisfactory implementation is found, it is ready for deployment.

The same GDM is used to generate the final optimized version of the required system and UMM
description of the system if the system is to be used as a stand-alone component.

0 4 QoS-based Approach

The UA to assuring the QoS of a DCS is made up of three steps: a) the creation of a catalog for QoS
parameters (or metrics), b) a formal specification of these parameters, and c) a mechanism for ensuring
these parameters, both at each individual component level and at the entire system level. In next few
sections, these three steps are described in detail.

4.1 A Catalog of QoS Parameters

There are many possible QoS parameters that a component (and its developer) can use to indicate the
associated service. In UA, as a first step, a catalog of QoS parameters is created [6]. The format of this
catalog is based on that of the design patterns [15] catalog. This catalog provides a vocabulary for a
QoS-based approach. A QoS parameter is entered into this catalog only if it is completely different from
the existing ones and appears in many application domains. It is expected that this catalog will gradually
evolve over a span of time.

The goal of creating the QoS catalog is two-fold: a) it assists the component developer (or the system
integrator) in selecting the necessary QoS parameters for the component (or system) under construction,
and b) it enables the developer (or integrator) to ensure the necessary QoS guarantees by integrating the
selected QoS parameters into the assurance process.

7

40

4.1.1 Description of QoS Parameters. Each parameter is described by using the following features:

1. Name: indicates the name of the parameter.

2. Intent: indicates the purpose of the parameter.

3. Description: provides a brief informal description of the parameter.

4. Influencing Factors: depicts the factors on which the parameter depends along with their measures
and degree of influence, if any.

5. Measure: indicates the unit in which to measure the parameter.

6. Known Usages: describes the known usages of the parameter.

7. Aliases: indicates other prevalent names, if any.

8. Related Parameters: indicates other related QoS parameters.

9. Consequences: indicates the effects if this parameter is used in describing the QoS of a component.

10. Levels: indicates possible QoS levels offered by a component.

11. Technologies: indicates the underlying technologies.

12. Applications: indicates the application domains in which the parameter has been used.

13. Exceptions: indicates the possible error situations and associated exception handling capabilities.

14. Example Scenario: indicates a possible scenario where it is appropriate for the parameter to be used.

4.1.2 List and Brief Description of QoS Parameters

In [421, a few QoS parameters for objects are described. That list has been augmented to create a current
version of the catalog that contains the following parameters:

1. Throughput: indicates the efficiency or speed of a component (e.g., user-interaction component).

2. Capacity: indicates the maximum number of concurrent requests a component can serve (e.g., server
component).

3. End-to-End Delay: indicates the time difference between the invocation of a method of a component
to its completion (e.g., numerical computational component).

4. Parallelism Constraints: indicates whether a component can support synchronous or asynchronous
invocations (e.g., server component).

5. Availability: indicates the duration when a component is available to offer a particular service (e.g.,
classifier component).

6. Ordering Constraints: indicates the order of the return results and its significance (e.g., transaction
component).

7. Error Rate: indicates the probability of returning incorrect results or no result at all (e.g., arithmetic
computational component).

8. Security: indicates the security-related details of a component (e.g., e-commerce component).

9. Transmission: indicates the quality of the data communication provided by a component (e.g., a
routing component).

10. Adaptivity: indicates how a component can adapt to changing environment (e.g., information service
provider component).

8

11. Evolvability: indicates how easily a component can evolve over a span of time (e.g., text-editor com-
* ponent).

12. Reliability: indicates reliability of the service offered by a component (e.g., real-time controller com-
ponent).

13. Stability: indicates whether a component can provide a predictable quality (e.g., network controller
component).

14. Result: indicates quality of the results returned (e.g., numerical computational component).

15. Achievability: indicates if a component can provide a higher degree of service than promised (e.g.,
multi-media transmission component).

16. Priority: indicates if a component is capable of providing prioritized service (e.g., scheduling compo-
nent).

17. Compatibility: indicates if a component is environment (e.g., platform) dependent or not (e.g., applet
component).

18. Presentation: indicates the presentation aspects of the result returned by a component (e.g., database
component).

4.1.3 Detailed Sample Description

Although, all the above mentioned parameters have been fully described in [6], for the sake of brevity below
only one parameter, Throughput, is described in detail.

"* Name: Throughput.

"* Intent: This parameter indicates the speed of efficiency of a component.

"* Description: This parameter is used to specify the number of methods or requests that a component
can serve per a given time unit (e.g., second) and the classification of the requested methods based
on their read/write behaviors.

"* Influencing Factors: This parameter depends on the following factors:

- Algorithms used by each method and associated complexity measures (e.g., time, space) - weight
of this factor is very important.

- Available resources and their abilities and quantities - weight of this factor is very important.

- Operating system scheduling scheme - weight of this factor is important.

"* Measure: Methods-completed /Second.

"• Known Usages: FTP Server, HTTP Server, Email Server, Information Classifying System, User In-
teraction Environment.

"• Aliases: Execution Rate.

"* Related Parameters: Capacity, Parallelism Constraints, and End-to-End Delay.

"* Consequences: A guarantee of a higher throughput could have an adverse effect on the resources
allocated to other components running on that machine thereby deteriorating their performance.

"* Levels: The possible levels for throughput could be: a) low (< 50 requests completed per second),
b) moderate (< 500 requests completed per second), and c) high (< 5000 requests completed per
second).

"* Technologies: RPC, RMI, etc.

"* Applications: Web, E-commerce, Database, Scientific Computation.

09

* Exceptions: a) actual throughput is less than the one promised (LessThanPromisedException) - this

can lead to disastrous situations in critical application domains, and b) actual throughput exceeds

the promised number (MoreThanPromisedException) - in most cases, this will not have any adverse

effect, but in some it can lead to problematic situations.

e Example Scenario: In an information filtering system, a representer component provides the ser-

vice of converting a textual document into its numerical equivalent form. The representer, typically,

supports a function called represent-document 0. If such a component specifies its QoS as 15 meth-

ods-completed/second, then it indicates that the representer is able to convert 15 textual documents

into their numerical forms in one second. A representer can also specify that it provides either one
level (say 15 methods/second) or two levels (15 methods/sec and 30 methods/sec) or three levels (15

methods/sec, 30 methods/sec and 45 methods/sec) of services.

4.2 Empirical Analysis of QoS Parameters

In [39] an empirical study is provided that illustrates the rules for composing and decomposing QoS pa-
rameters. Here a brief discussion is provided in the context of the end-to-delay (also called as turn-around

time) for a simple account system (similar to the case study presented in the section 6).
As stated earlier, the end-to-end delay is the response time of any system. Many IT professionals use the

eight-second rule as a threshold for the maximum allowable limit for the end-to-end delay with a download.

It is ranked as the second most important QoS parameter after the availability4 and is critical for many

different application domains. Many different factors affect end-to-end delay. These include, the actual

computational efforts and policies, network delays, and possible security delays. End-to-end delay is a
dynamic parameter and is easily composable, i.e., the total end-to-end delay for a system is a summation

of the end-to-end delays of the individual components that make up the system. Thus, given the individual

end-to-end delays, it is possible to predict the delay of the assembled system.
As a simple case study, to validate this model, a simple bank system consisting of three components (a

client, a server and a database) was created. Each component contained end-to-end delay as one of its QoS

parameters. These components were deployed and executed, in isolation, on a LAN of Sun SPARC machines

and average values for their end-to-end delays were computed. These values were found to be 34 ms (for the

client component), 119 ms (for the server component) and 126 ms (for the database component). Based on
these numbers, it was predicted that the integrated system will have the end-to-end delay in the range of
278 ms (which is the summation of the individual end-to-end delays). A distributed system made of these

three components was created, deployed and its average value for the end-to-end delay was computed. This
value was found to be 287 ms - which is in the same order as the predicted value (278 ms).

This simple experiment was carried to indicate that an empirical evaluation, based on the QoS catalog

and composition/decomposition rules, will enable a system integrator to not only assemble heterogeneous
components but also deploy, execute and validate the combined ensemble.

Instead of a simple empirical evaluation, indicated above, the UniFrame approach will use the notion

of event grammars (as described in the next section) for measuring and validating QoS parameters of an

integrated system.

4.3 QoS Metrics and Implementation

Dynamic QoS metrics can be expressed in a uniform manner based on the system behavior models. In [2, 3]

the use of event grammars as a basis for such models is suggested. An event is an abstraction of any

detectable action performed during run-time, for instance, execute a statement or call a procedure. An
event has beginning, end, and duration, and some other attributes, such as program states at the beginning

and end of the event, source code associated with the event, and so on. Two binary relations are defined
4Hence, these two parameters are also used in the case study of section 6.

10

for the events. One event may precede another event, e.g. one statement execution may precede another,
or one event may be included in another, e.g., a statement execution event may appear inside a procedure
call event. System execution may be represented as a set of events with the two basic relations between
them - event trace. An event grammar is a set of axioms that determines possible configurations of events
of different types within the event trace. For example, the axiom

execute-assignment : evaluate-expression perform-destination

specifies that the event of the type execute-assignment contains a sequence (with respect to the precedence
relation) of events of types evaluate-expression and perform-destination, correspondingly.

Different dynamic QoS metrics could be expressed as appropriate computations over event traces. For
example, if 'function-call IS A' denotes an event of the type function call with the name A, then the total
duration of this function call may be expressed as:

SUM/[X: function-call IS A FROM execute-program Duration(X)]

[... denotes a sequence constructor which selects from the whole event trace (an event of the type
execute-program) all events that match the pattern function-call IS A, takes the Duration attribute of those
events, and sums them up. Event grammars and the notion of the computations over event traces provide a
uniform framework to define different dynamic QoS metrics. This mechanism may be a basis of automatic
instrumentation of the generated code.

As has been indicated above, static QoS parameters are processed by generation rules at generation
time according to the inference rules encoded in the domain model (see example in section 6.5). Therefore,
the event grammar and a language for event trace computations are part of the GDM.

It should be noted that the assurance of QoS (as described above) indicates that a component can
guarantee appropriate values for its QoS parameters in an 'ideal' situation. This does not guarantee that a
component will be able to either provide this QoS under failure circumstances or will automatically adjust
its QoS to hide the failures. For the failure situations, the ideas provided by QuO [5] or RAPIDware [271O can be incorporated into the UMM and UA.

5 Formal Specification in the Unified Approach

Formal specification in UA is by means of Two-Level Grammar (TLG, also called W-grammar). TLG
was originally developed as a specification language for programming language syntax and semantics and
was used to completely specify ALGOL 68 [41]. TLG may be used as an object-oriented requirements
specification language and also serve as the basis for conversion from requirements expressed in natural
language into a formal specification [22]. This section describes the TLG language details that facilitate these
processes and elaborates on how the language may be used in formal specification of UMM specifications.

The name "two-level" in Two-Level Grammar comes from the fact that TLG consists of two context-free
grammars interacting in a manner such that their combined computing power is equivalent to that of a
Turing machine [36]. These two grammars define the set of type domains and the set of function definitions
operating on those domains. Note that while the term "domain" is used in a type-theoretic context, the
notion can be scaled up to a much larger context as in domain of "objects." These grammars may be
defined in the context of a class in which case the type domains define the instance variables of the class
and the function definitions define the methods of the class. Each of these terms are defined below.

5.1 Types

The type declarations of a TLG program define the domains of the functions and allow strong typing of
identifiers used in the function definitions. The function domains of TLG may be formally structured as
linear data structures such as lists, sets, bags, or singleton data objects, or be configured as tree-structured

0 11

data objects. The standard structured data types of product domain and sum domain may be treated as
special cases of these.

Domain declarations have the following form:

Identifier-I, Identifier-2, ... , Identifier-m:

data-object-1; data-object-2; ... ; data-object-n.

where each data-object-i is a combination of domain identifiers, singleton data objects, and lists of
data objects, which taken together as a union form the type of Identifier-I, Identifier-2, ... , Identifier-rn.
Note that if n=l, then the domain is a true singleton data object, whereas if n>l, then the domain is
a set of the n objects. Syntactically, domain identifiers are capitalized, with underscores or additional
capitalizations of successive words for readability (e.g., IntegerList, Symbol-Table, etc.), and singleton data
objects are finite lists of natural language words written entirely in lower case letters (e.g., sorted list).
For improved readability, the domain identifiers are represented in italics and data objects are represented
in the typewriter font.

A list, set or bag structure is denoted by a regular expression or by following a domain identifier with the
suffix List, Set, or Bag, respectively. Following conventional regular set notation, * implies a set of zero or
more elements while + denotes a set of one or more elements. As in any programming language, readability
is promoted through the use of appropriate names for identifiers. Furthermore, there exists a predefined
environment of primitive types, defining such domains as Integer, Boolean, Character, String, etc., in the
obvious ways. The main difference between list structures and tree structured domains in terms of their
declaration is whether the defining domain identifier declaration is recursive or not. Recursive domains are
more powerful in that they allow "context-free" data types to be defined, such as expression strings with
balanced parentheses.

5.2 Functions

O Function definitions comprise the operational part of a TLG specification. Their syntax allows for the
semantics of the function to be expressed using a structured form of natural language. Function definitions
take the forms:

function signature.
function signature : function-call-i, function-call-2, ... , function-call-n.

where n>l. Function signatures are a combination of natural language words and domain identifiers. For
improved readability, we will use boldface type to represent the function keywords. Domain identifiers in
the context of a function typically correspond to variables in a conventional logic program. As in logic
programs, some of these variables will typically be input variables and some will be output variables, whose
values are instantiated at the conclusion of the function call. Therefore, functions usually return values
through the output variables rather than directly, in which case the direct return value is considered as a
Boolean true or false. true means that control may pass to the next function call, while false means the
rule has failed and an alternative rule should be tried if possible. Alternative rules have the same format
as that given above. If multiple function rules have the same signature, then the multiple left hand sides
may be combined with a ; separator, as in:

function signature :
function-call-li, function-call-12, ... , function-call-lj;
function-call-21, function-call-22, ... , function-call-2k;

function-call-nl, function-call-n2, .. , function-call-nm.

12

where there are n alternatives, each having a varying number of function calls. Besides Boolean values,
functions may return regular values, usually the result of arithmetic calculations. In this case, only the
last function call in a series should return such a value, i. e., not function-call-i, function-call-2,
function-call-(n-I).

An important aspect about TLG is that the functions may be written at a very high level of abstraction
(e.g. compute the total mass and total cost) or embedded into a domain definition as in traditional
object-oriented programs (e.g. compute the TotalMass and TotalCost of This Part by computing the
TotalMass and TotalCost of its Subparts, which might be embedded as a method in a Part class). The use
of natural language in the function may be regarded as a form of infix notation for functions, in contrast with
the customary prefix forms of most other programming languages. It is similar to multi-argument message
selectors in Smalltalk but provides even greater flexibility, including the presence of logical variables, denoted
by the use of domain names (capitalized). This notation provides a highly readable way of writing what is
to be done and is wide-spectrum in the sense that "what is to be done" may be expressed at multiple levels.
The functions typically return a Boolean value as the main operation is to instantiate the logical variables
as in Prolog, but simple function values such as arithmetic expressions may also be computed.

To explain the operational semantics of Two-Level Grammar function rules, note that each function call
on the right hand side of a function definition should correspond to a function signature defined within the
scope of the TLG program or be a special operation such as a Boolean comparison, assignment statement,
or if-then-else statement. The most important aspect of function definitions is that every domain identifier
with the same name is instantiated to the same value, as in Prolog. This is called consistent substitution.
If variables have the same root name but are numbered, then the numbers are used to distinguish between
variables. A numbered variable V1 will then be different from a variable V2 and the two can have different
values. However, they will be of the same type, namely type V. Note that once a variable has been assigned
a value, it may not be reassigned, unless it is an instance variable of a class, and even in this case, it would
not be usual to do so in the same function. Each function definition may therefore be thought of as a set of
logical rules. Also, as in Prolog, the function calls are executed in the order given in the function definition.
Functions may be recursive with the expected operational behavior.

Besides defined functions, TLG supports the usual arithmetic and Boolean operations. For lists, list
comprehensions are also supported as are iterators over the list. The syntax of a list comprehension is
list all Element from ElementListl such that Element condition giving ElementList2. This returns a
list, ElementList2, of all Element values in ElementList satisfying the given condition. The syntax of an
iterator is select Element from ElementList with Element condition. This returns the first Element from
ElementList which satisfies the condition.

5.3 Classes

In order to support object-orientation, TLG domain declarations and associated functions may be structured
into a class hierarchy supporting multiple inheritance. The syntax of TLG class definitions is:

class Identifier-1 [extends Identifier-2, Identifier-3, ... Identifier-n].
instance variable and method declarations

end class [Identifier-I].

In the above syntax, square brackets are used to indicate the construct is optional. Identifier-I is declared
to be a class which inherits from classes Identifier-2, Identifier-3, ..., Identifier-n. Note that the extends
clause is optional so a class need not inherit from any other class. The instance variables comprising the
class definition are declared using the domain declarations described earlier. In general, the scope of these
domain declarations is limited to the class in which they are defined, while the methods, corresponding to
TLG function definitions, have scope anywhere an object of the given class is referred to. These notions of
scoping correspond to private and public access respectively in object-oriented languages such as C++ and

13

Java, and either scope may be declared explicitly or the scope may be made protected. Methods are called
by writing a sentence or phrase containing the object. The result of the method call is to instantiate the
logical variables occurring in the method definition.

In any class for every instance variable of simple type there are get and set methods to access or modify

that variable.
TLG class declarations serve to encapsulate the TLG domain declarations and function definitions. The

class hierarchy which is resident in TLG is a small forest of built-in classes, such as integers, lists, etc. The
"(Cmain" program is nothing more than a set of object declarations using the existing class identifiers as

domain names and a "query" of the appropriate methods.

5.4 Example

As an example of a TLG specification, consider the following translation scheme for producing three address

code [1] from simple arithmetic expressions.

class CodeGenerator.
Expression:: Term {AddingOperator Term}*.
AddingOperator :: +; -.

Term :: Factor { MultiplyingOperator Factor}*.

Multiplying Operator :: *; /.
Factor :: (Expression); Identifier-, Float; Integer.

ExpressionIdentifier, TermIdentifier, FactorIdentifier, Identifier:: String.

Expression Type, Term Type, FactorType, Type :: float; integer; undefined.

three address code for Expression AddingOperator Term is Identifier type Type:

three address code for Expression is ExpressionIdentifier type Expression Type,0 three address code for Term is TermIdentifier type TermType,
common type of Expression Type and TermType is Type,

type convert ExpressionIdentifier type Expression Type into Identifier1 type Type,

type convert TermIdentifier type Term Type into Identifier2 type Type,

ThreeAddress Code generate temporary Identifier := Identifier1 AddingOperator Identifier2.

three address code for Term MultiplyingOperator Factor is Identifier type Type:

... similar to above ...

three address code for (Expression) is Identifier type Type:

three address code for Expression is Identifier type Type.

three address code for Identifier is Identifier type Type:

SymbolTable lookup Identifier giving Type,
Type != undefined.

three address code for Float is Float type float.

three address code for Integer is Integer type integer.

14

end class.

For simplicity only two types, float and integer, are assumed. There is also a SymbolTable class assumed
with standard operations such as looking up an identifier to obtain its type, and a ThreeAddressCode class
assumed with an operation to generate a three-address code instruction in the code array, possibly including
an assignment to a temporary variable. Rules to check type compatibility and perform type conversions
are also present but not shown here. Error checking is not explicitly indicated but would occur through
failure of any rule, e.g., a syntactically ill-formed expression would not match any of the three address
code rules, an identifier not declared would cause the identifier rule to fail, and any errors in typing would
cause the type checking rules to fail.

These rules would be queried as follows:

CodeGenerator three address code for a * (b + 1) is Id type Type

This creates a code string of:

tl b + 1
t2 a * tl

and returns t2 for Id and integer for Type, respectively (assuming that a and b are stored in the symbol
table as type integer variables).

This example illustrates that TLG may be used to provide for attribute evaluation and transformation,
syntax and semantics processing of languages, parsing, and code generation. All of these are required to
use TLG as a specification language for generative rules [9].

5.5 Implementation

Two-Level Grammar is implemented as part of a specification development environment which facilitates
the construction of TLG specifications from natural language, and then translates TLG specifications into
executable code. The natural language requirements are translated into TLG through Contextual Nat-
ural Language Processing (CNLP) [26] which constructs a knowledge representation of the requirements
which may then be expressed using TLG [23]. The TLG is then translated into VDM++ [17], the object-
oriented extension of the Vienna Development Method (VDM) specification language [21]. The IFAD VDM
ToolboxTM [18] may then be used to generate code in an object-oriented programming language such as
Java or C++.

6 A Case Study

This section presents a simple example from the account management domain to illustrate how the previous
concepts can be applied to assemble a component-based system from a developer's request. Before the
developer can make this request, experts must construct a GDM for the domain of interest and suppliers
must provide on the network any UMM components that might be necessary to meet the developer's needs.

6.1 TLG Component Specification

Two-Level Grammar is used as the formalism for both the UMM and the generative rules, which make up
part of the GDM. The UMM formalization establishes the context for which the generative rules may be
applied.

15

6.1.1 UMM

The basic TLG statement of the UMM specification template for components in the example is given below.
Some details are omitted for brevity. The domain experts create the UMM specification which may then
be parsed into TLG according to the template below. Any component described using UMM will be typed
according to these declarations. A supplier implements a component and then makes it available to potential
users by publishing a description of it that this TLG can parse.

UMM:: ComponentName InformalDescription FunctionList Computation alA ttributes
CooperationAttributes A uxiliaryA ttributes QoSMetricList.

ComponentName, Inform aID escription, Function :: String.
ComputationaIA ttributes :: InherentAttributes FunctionalAttributes.
InherentAttributes :: Id Version DateDeployed.
Id :: String.

Version :: Float.
DateDeployed :: Date.
FunctionalAttributes :: TaskDescription AlgorithmAndComplexity Syntactic Construct Technology.
TaskDescription :: String.
AlgorithmAndComplexity::

Syntactic Construct :: FunctionSignatureList.
FunctionSignature::
Technology :: corba; java applet; java rmi;
CooperationAttributes :: Preprocessing CollaboratorList PostprocessingCollaboratorList.
Preprocessing Collaborator :: String.
Postprocessing Collaborator :: String.

*AuxiliaryAttributes ::

QoSMetric:: Throughput; Capacity; EndToEndDelay; Parallelism Constraints; Availability;
Throughput:: Float.

Capacity :: Integer.
EndToEndDelay :: Integer ms.
Parallelism Constraints :: synchronous; asynchronous.
Availability :: Float; Integer ".

6.2 Client and Server Distributed Components

At this point in the example, suppose that suppliers have implemented and made available within UMM
three types of components that developers can use to assemble account management systems with a
client/server architecture. These include two instances of AccountServer and one instance of AccountClient.
The server components are heterogeneous - j avaAccountServer adheres to the Java-RMI model; while
corbaAccountServer is developed using the CORBA model. The client, javaAccountClient is developed
by using the Java-RMI model and is implemented as an applet. The partial UMM descriptions of these
components are presented below. One can see that the previous TLG component specification can parse
these declarations.

* 16

6.3 Component Descriptions in UMM

javaAccountServer

Informal Description: Provides an account management service. Supports three
functions: javaDeposito, javaWithdraw() and javaBalanceo.

1. Computational Attributes:
a) Inherent Attributes:

a.1 id: intrepid.cs.iupui.edu/jServer

b) Functional Attributes:
b.1 Acts as an account server
b.2 Algorithm: simple addition/subtraction
b.3 Complexity: 0(0)
b.4 Syntactic Contract:

void javaDeposit(float ip);
void javaWithdraw(float ip) throws overDrawException;
float javaBalanceo;

b.5 Technology: Java-RMI

2. Cooperation Attributes:
2.1) Pre-processing Collaborators: AccountClient

3. Auxiliary Attributes:

4. QoS Metrics:
Availability: 90.
End-to-End Delay < 10 ms

corbaAccountServer

Informal Description: Provides an account management service. Supports three
functions: corbaDeposito, corbaWithdraw() and corbaBalanceo.

1. Computational Attributes:
a) Inherent Attributes:

a.1 id: jovis.cs.iupui.edu/coServer

b) Functional Attributes:
b.1 Acts as an account server
b.2 Algorithm: simple addition/subtraction
b.3 Complexity: 0(1)

b.4 Syntactic Contract:
void corbaDeposit(float ip);
void corbaWithdraw(float ip) throws overDrawException;
float corbaBalanceo;

b.5 Technology: Java-CORBA

17

0
2. Cooperation Attributes:

2.1) Pre-processing Collaborators: AccountClient

3. Auxiliary Attributes:

4. QoS Metrics:
Availability: 95%

End-to-End Delay < 10 ms

javaAccountClient

Informal Description: Requests account services from an appropriate server and

interacts with the user -- implemented as a web-based applet. Supports

functions: depositMoneyo, withdrawMoney() and checkBalanceo).

1. Computational Attributes:
a) Inherent Attributes:

a.1 id: galileo.cs.iupui.edu/aClient

b) Functional Attributes:

b.1 accepts user queries and presents the results using a GUI
b.2 Algorithm: Java Foundation Classes (JFC)
b.3 Complexity: 0(1)
b.4 Syntactic Contract

void depositMoney(float ip);
void withdrawMoney(float ip);

float checkBalanceo;
b.5 Technology: Java Applet

2. Cooperation Attributes:
2.1) Post-processing Collaborators: AccountServer

3. Auxiliary Attributes:

4. QoS Metrics:
Availability: 80%
End-to-End Delay < 20 ms

6.4 Account Management Problem Statement

Once a GDM for an accounting management domain has been defined and appropriate UMM components
are available, a developer can pose the problem of finding and assembling the components necessary to
create an account management system. Resolving this query involves identifying in the GDM a design for
such a system (this part of the GDM is not shown here), issuing a request to the UMM headhunters for
component implementations that match the UMM component specifications of the design, and assembling
them into an implementation of a problem solution. An important part of the query statement is the

18

. identification of the application domain in which the solution design lies.
A sample query for the present example can be informally stated as: Create an account management

system that has: availability >= 50% and end-to-end delay < 50 ms. This query specifies that a static
and a dynamic QoS parameter must be satisfied. The natural language processor of UA will infer that the
application domain is account management and, thus, conforms to the example GDM described above. In
response, the UMM headhunters will discover components for the following system assemblies:

1. Java-Java System

(a) javaAccountClient - availability >= 80%, End-to-End delay < 20ms, Java Applet Technology

(b) j avaAccountServer - availability >= 90%, End-to-End delay < 10ms, Java-RMI technology

(c) Infrastructure Needed - JVM and Appletviewer

2. Java-CORBA System

(a) j avaAccountClient - availability >= 80%, End-to-End delay < 20ms, Java Applet Technology

(b) corbaAccountServer - availability >= 95%, End-to-End delay < 10ms, Java-RMI technology
(c) Infrastructure Needed - JVM, Appletviewer, ORB, Java-CORBA bridge

6.4.1 Generation Rules

The process of parsing UMM component descriptions, as mentioned in the preceding examples, provides a
structure to the UMM that can be processed by TLG functions. These functions include generative rules
for construction of the wrapper/glue code and the event grammar instrumentation to assure the QoS of the
accounting system.

A sampling of TLG rules that may be used to generate the appropriate glue/wrapper code to connect
the components of the accounting system are presented below. These rules are based on selecting from the
GDM of the accounting systems the appropriate system model for this two-component DCS.

ClientUMM, ServerUMM:: UMM.
Client Operations, ServerOperations :: {Interface}*.
generate system from ClientUMM and ServerUMM:

Client Operations := ClientUMM get operations,
ServerOperations := ServerUMM get operations,

OperationMapping := map ClientOperations into ServerOperations,
ComponentModel := ServerUMM get component model,
generate java code for OperationMapping using ComponentModeL

This rule generates Java code for two UMM models representing a client and server, respectively. For this
example, the ClientUMM would be the UMM specification of j avaAccountClient presented previously and
the ServerUMM would be the UMM specification of javaAccountServer or corbaAccountServer. The
main tasks are to map client operations onto server operations, e.g., depositMoney in j avaAccountClient
maps to corbaDeposit in corbaAccountServer or to javaDeposit in javaAccountServer, and then gen-
erate the code to implement this mapping. The generated code will be in Java since the client code is in
Java and must seamlessly interface with it. If the client is in C++ or other language, similar rules will be
defined and many rules will be language independent.

The actual mapping to be defined will be based upon a natural language analysis of the names of
operations. The closer the names match, the more easily the system can establish the correct mapping.
This depends upon both the care and style with which the user has written the interface method names
and so may vary widely. For this example, it can be seen that the correspondence between names, while
not exact, is relatively close.

19

The next rule describes the specifics of generating CORBA code in Java to implement the mapping that
arises by combining the javaAccountClient with the corbaAccountServer.

CorbaPackageName, Corba Object Type, CorbaObjectName :: String.
ClassName, JavaClassName :: String.
generate java code OperationMapping using corba:

CorbaPackageName := OperationMapping get corba package name,
Corba Object Class := OperationMapping get corba object type,
ClassName:= OperationMapping get class name,
JavaClassName := Java 11 ClassName,

CorbaObjectName := object 1 ClassName,
Set Up Code:= ComponentModel generate java code,
Operations := generate java code for OperationMapping,
return

import CorbaPackageName .

public class JavaClassName {
private CorbaObjectClass CorbaObjectName
// initialize CORBA client module
public void init () {

SetUpCode

}
Operations

This rule generates the class structure required by the Java implementation, which consists of a function
init to set up the CORBA ORB and the operations needed in the server. This includes the code to initialize
the CORBA object so that future operations can refer to it. It is necessary to first extract the names of
the CORBA package, class of the CORBA object to be referenced within the package, and the name of
the class itself. These are all stored in the OperationMapping. The name of the Java class generated is
simply the string "Java" concatenated I with the name of the server class, i.e., JavaCorbaAccountServer.
The name of the CORBA object is generated in a similar way.

The rule below describes the mechanism for generating the individual methods in Java CorbaAccountServer.
For simplicity, only the case where the class is to contain a single method is shown. Multiple methods would
be handled in a similar manner.

generate java code for OperationNamel ArgumentListl ReturnType
maps to OperationName2 ArgumentList2 ReturnType

JavaReturnType := java type of ReturnType,
JavaArgumentList :=

list all Argument from ArgumentListl
mapped by function java argument of Argument,

JavaArgumentListDefinition := separate JavaArgumentList by
OperationCall := generate java code for OperationName2 ArgumentListl ReturnType,
return

5The TLG concatenation operation (I1) differs from juxtaposition in that it does not produce a space between the operands.

* 20

public JavaReturnType OperationNamel (JavaArgumentListDefinition)
EventTrace . setBeginTime 0;
Operation Call
EventTrace setEndTime 0;
EventTrace . calculateResponseTime 0;

This generation assumes that the methods have the same return type and so the main task is to express
the arguments of the first operation in terms of Java syntax and generate the appropriate method call.
The former is accomplished by using a TLG list comprehension to map the arguments in ArgumentListl
into corresponding Java arguments represented by JavaArgumentList. There is a subtlety here in that
JavaArgumentList is an abstract syntax representation of the desired argument list and so this must be
made into concrete syntax using the separate operation which adds the appropriate commas in between
the argument declarations. The appropriate method call is handled by the rule below.

generate java code for OperationName ArgumentList ReturnType:
IdentifierList :=

list all Argument from ArgumentList
mapped by function argument id of Argument,

IdentifierListIn Call := separate IdentifierList by
return

CorbaObjectName . OperationName (IdentifierListIn Call);.

Again a list comprehension is used to extract: the arguments from the argument list, this time only the iden-
tifier part (achieved by function argument id of Argument). Likewise, the abstract syntax representation
must be made concrete by comma separators.

Finally, the event grammar instrumentation is added to measure the time at the beginning of the server
method call and again at the end so that the actual response time can be evaluated against the required
QoS (< 100ms). The QoS metrics for "response delay" mean execution time for each method call within
the server or client, and require the instrumentation of each generated wrapper for the client/server method
call with auxiliary functions able to check the clock at the beginning and at the end of method call, calculate
the duration, and submit it to the execution monitor (also generated as a part of instrumentation). It is
assumed that these are taken care of by a class called EventTrace. Each of the two example systems will
be implemented with the code for carrying out event trace computations according to test cases which must
be supplied by the user. These test cases will be executed to verify that the bank account management
system satisfies the QoS specified in the query. If the system is not verified, it is discarded. This verifica-
tion process is carried out for each of the generated bank account management system (two in the above
example). Then the one with the best QoS is chosen, in the above example the CorbaAccountServer and
JavaAccountClient combination.

For the example UMM specification, the following code for the depositMoney function would be pro-
duced.

public void depositMoney (float ip) {
EventTrace . setBeginTime C);
objectCorbaAccountServer . deposit (ip);
EventTrace . setEndTime 0;

21

EventTrace . calculateResponseTime 0;
}

6.5 QoS

Each component has two QoS parameters - 1) static - run-time availability (e.g. 90% and 95% respectively)
and 2) dynamic - end-to-end delay measured in milliseconds. The desired QoS of the assembled system
includes both of these parameters as well. For this reason the GDM will contain a rule for the static
parameter that will multiply the various availability parameters (e.g. obtaining 85.5% availability for the
assembled system in this case), assuming component availability is independent.

For the dynamic parameter, the generator will provide the necessary instrumentation for taking the clock
and calculating the end-to-end delay at run-time. The knowledge about metrics for the QoS parameter 'end-
to-end delay' is represented in terms of the Duration attribute for events of the type method-call, and the
generic computation over the event trace that takes the clock and sums up those durations yielding a
measured end-to-end delay time for the accounting system.

One of the two example systems, mentioned in the section 6.4, will be implemented with the code
for carrying out event trace computations according to user supplied test cases. These test cases will be
executed to verify that the accounting system satisfies the QoS specified in the query of the section 6.4. If
the system is not verified, it is discarded. This verification process is carried out for each of the generated
accounting systems (two in the above example). Then one with satisfactory QoS is chosen; in the above
example this is the corbaAccountServer and javaAccountClient combination.

7 Conclusion

This paper has presented a framework that allows an interoperation of heterogeneous and distributed
software components. This framework incorporates the following key concepts: a) a meta-component
model, b) integration of QoS at the individual component and distributed system levels, c) validation and
assurance of QoS, based on the concept of event grammars, d) formal specification, based on Two-Level
Grammar, of each component and associated queries for integrating a distributed system, and e) generative
rules, along with their formal specifications, for assembling an ensemble of components out of available
choices. The software solutions for future DCS will require either automatic or semi-automatic integration
of software components, while abiding by the QoS constraints advertised by each component and the system
of components. The result of using UMM and the associated tools is a semi-automatic construction of a
distributed system. Although a simple case study is provided in this paper, the principles of the proposed
approach are general enough to be applied to larger cases. Experimentation with such examples is necessary
to establish the extent to which such scale up is feasible in practice.

Acknowledgments. The material presented in this paper is based upon work supported by, or in
part by, a) the U. S. Office of Naval Research under award number N00014-01-1-0746, b) the U. S. Army
Research Laboratory and the U. S. Army Research Office under contract/grant number 40473-MA, and c)
the U. S. Army Research Laboratory and the U. S. Army Research Office under contract/grant number
DAAD19-00-1-0350.

* 22

* References

[1] Aho, A. V. and Sethi, R., and Ullman, J. D. Compilers: Principles, Techniques, and Tools. Addison-
Wesley, 1986.

[2] Auguston, M. Program Behavior Model Based on Event Grammar and its Application for Debug-
ging Automation. In Proceedings of the 2nd International Workshop on Automated and Algorithmic
Debugging, 1995.

[3] Auguston, M. and Gates, A. and Lujan, M. Defining a Program Behavior Model for Dynamic An-
alyzers. In Proceedings of the 9th International Conference on Software Engineering and Knowledge
Engineering, SEKE'97, pages 257-262, 1997.

[4] Batory, D., Chen, G. and Robertson, E., and Wang, T. Design Wizards and Visual Programming
Environments for GenVoca Generators. IEEE Transactions on Software Engineering, pages 441-452,
2000.

[5] BBN Corporation. Quality Objects (Quo) URL:-http://www.dist-systems.bbn.com/tech/QuO/, 2001.

[6] Brahnmath, G. J., Raje, R. R., Olson, A. M., Auguston, M., Bryant, B. R., and Burt, C. C.,. A Quality
of Service Catalog for Software Components. In Proceedings of the Southeastern Software Engineering
Conference (in press), 2002.

[7] Barrett R. Bryant. Object-oriented natural language requirements specification. In Proceedings of
A CSC 2000, the 23rd Australasian Computer Science Conference, pages 24-30, 2000.

[8] Bryant, B. R. and Lee, B.-S. Two-Level Grammar as an Object-Oriented Requirements Specification
Language. In Proceedings of HICSS-35, 35th Hawaii International Conference on System Sciences,
http: //wvw.hicss.hawaii. edu/HICSS_35/HICSSpapers/PDFdocuments/STDSLO1 .pdf, 2002.

[9] Bryant, B. R., Auguston, M., Raje, R. R., Burt, C. C., and Olson, A. M. Formal Specification of Gen-
erative Component Assembly Using Two-Level Grammar. In Proceedings of SEKE 2002, Fourteenth
International Conference on Software Engineering and Knowledge Engineering (in press), 2002.

[10] Burt, C. C., Bryant, B. R., Raje, R. R., Olson, A. M., and Auguston, M. Quality of Service Issues
Related to Transforming Platform Independent Models to Platform Specific Models. In Proceedings
of EDOC 2002, the 6th IEEE International Enterprise Distributed Object Computing Conference (in
press), 2002.

[11] Burt, C. C., Raje, R. R., Auguston, M., Bryant, B. R., and Olson, A. M. Quality of Service (QoS)
Standards for Model Driven Architecture. In Proceedings of the Southeastern Software Engineering
Conference (in press), 2002.

[12] California Institute of Technology. Caltech Infospheres On-line Documentation,
URL:- http://www.infospheres.caltech.edu/, 1998.

[13] Czarnecki, K. and Eisenecker, U. W. Generative Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[14] Fox, G. The Document Object Model - Universal Access - Other Objects - CORBA, XML, Jini,
JavaScript, etc. http://www.npac.syr.edu/users/gcf/msrcobjectsapril99, 1999.

[15] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley Publication Company, 1995.

[16] Globus Project. Globus Website, URL:- http://www.globus.org/, 2000.

[17] IFAD. The IFAD VDM++ Language. Technical report, IFAD, 1999.

[18] IFAD. The VDM++ Toolbox User Manual. Technical report, IFAD, 2000.

[19] Israel, B. and Kaiser, G. Coordinating Distributed Components Over the Internet. IEEE Internet
Computing, pages 83-86, 2(2), 1998.

23

* [20] Jurafsky, D. and Martin, J. H. Speech and Language Processing. Prentice Hall, 2000.

[21] Larsen, P. G., et al. Information Technology - Programming Languages, Their Environments and
System Software Interfaces - Vienna Development Method - Specification Language - Part I: Base
Language. Report, International Standard ISO/IEC 13817-1, December 1996.

[22] Lee, B.-S., and Bryant, B. R. Automated Conversion from Requirements Documentation to an Object-
Oriented Formal Specification Language. In Proceedings of the 2002 ACM Symposium on Applied
Computing, pages 932-936, 2002.

[23] Lee, B.-S., and Bryant, B. R. Contextual Knowledge Representation for Requirements Documents
in Natural Language. In Proceedings of FLAIRS 2002, the 15th International Florida AI Research
Symposium (In Press), 2002.

[24] Luqi, Berzins, V., Ge, J., Shing, M., Auguston, M., Bryant, B. R. and Kin, B. K. DCAPS - Archi-
tecture for Distributed Computer Aided Prototyping System. In Proceedings of RSP 2001, the 12th
International Workshop on Rapid System Prototyping, 2001.

[25] Manola, F. Technologies for a Web Object Model. IEEE Internet Computing, 3(1):38-47, January-
February 1999.

[26] McCarthy, J. Notes on Formalizing Context. Technical report, Computer Science Department, Stanford
University, Stanford, CA, 1993.

[27] Michigan State University. RAPIDware: Component-Based Development of Adaptable and Dependable
Middleware URL:-http://www. cse. msu. edu/rapidware/, 2001.

[28] Microsoft. .NET home Page. URL:- http://www.microsoft.com/net/, 2002.

[29] Microsoft Corporation. DCOM Specifications, URL:- http://www.microsoft.com/oledev/olecom, 1998.

[30] Object Management Group. CORBA Components. Technical report, Object Management Group TC
Document orbos/99-02-05, March 1999.

[31] Object Management Group. Model Driven Architecture: A Technical Perspective. Technical report,
Object Management Group Document No. ab/2001-02-01/04, February 2001.

[32] Orfali R, and Harkey, D. Client/Server Programming with JAVA and CORBA. John Wiley & Sons,
Inc., 1997.

[33] Raje, R. UMM: Unified Meta-object Model for Open Distributed Systems. In Proceedings of the Fourth
IEEE International Conference on Algorithms and Architecture for Parallel Processing (ICA3PP 2000),
2000.

[34] Raje, R., Auguston, M., Bryant, B., Olson, A. and Burt, C. A Unified Approach for the Integration
of Distributed Heterogeneous Software Components. In Proceedings of the 2001 Monterey Workshop
on Engineering Automation for Software Intensive System Integration, pages 109-119, 2001.

[35] Rogerson, D. Inside COM. Microsoft Press, 1996.

[36] Sintzoff, M. Existence of van Wijngaarden's Syntax for Every Recursively Enumerable Set. Ann. Soc.
Sci. Bruxelles, 2:115-118, 1967.

[37] Siram, N. An Architecture for the UniFrame Resource Discovery Service. Master's thesis, Indiana
University Purdue University Indianapolis, 2002. Department of Computer and Information Science.

[38] Siram, N. N., Raje, R. R., Bryant, B. R., Olson, A. M., Auguston, M., and Burt, C. C. An Architecture
for the UniFrame Resource Discovery Service. In Proceedings of SEM 2002, the 3rd International
Workshop on Software Engineering and Middleware (in press), 2002.

[39] Sun, C., Raje, R.. R., Olson, A. M., Bryant, B. R., Auguston, M., Burt, C. C., and Huang, Z. Compo-
sition and Decomposition of QoS Parameters in Distributed Component-based Systems. In Proceed-
ings of the 5th IEEE International Conference on Algorithms and Architecture for Parallel Processing
(ICA3PP 2002) (in press), 2002.

24

* [40] University of Virginia. Legion Project, URL:- http://www.cs.virginia.edu/ legion, 1999.

[41] van Wijngaarden, A. Revised Report on the Algorithmic Language ALGOL 68. Acta Informatica,
5:1-236, 1974.

[42] Zinky, J. A., Bakken, D. E., and Schantz, R. Overview of Quality of Service for Distributed Objects.
In Proceedings of the Fifth IEEE Dual Use Conference, 1995.

0

9 25

A Quality of Service Catalog for Software Components

Girish J. Brahnmath' Rajeev R. Raje' Andrew M. Olson' Mikhail Auguston 2 Barrett R. Bryant 3 Carol C. Burt 3

Abstract
Component-based Software Development is being recognized as the direction in which the software industry is
headed. With the proliferation of Commercial Off The Shelf (COTS) Components, this trend will continue to
emerge as a preferred technique for developing distributed software systems encompassing heterogeneous
components. In order for this approach to result in software systems with a predictable quality, the COTS
components utilized should in turn offer a guaranteed level of quality. This calls for an objective paradigm for
quantifying the quality of service of COTS components. A Quality of Service (QoS) catalog, proposed here, for
software components is a first step in quantifying the quality attributes. This catalog is a critical component of the
UniFrame project, which targets at unifying the existing and emerging distributed component models under a
common meta-model for the purpose of enabling discovery, interoperability, and collaboration of components via
generative programming techniques.
Keywords: Quality of Service, non-functional attributes, QoS catalog, Component-based development.

1. Introduction:
Component-based software development uses appropriate off the shelf software components to create software
systems. The notion of assembling complete systems out of prefabricated parts is prevalent in many branches of
science and engineering such as manufacturing. This leads to the creation of prompt and economical products. This
is possible because of the existence of standardized components that meet a manufacturer's functional and non-
functional (quality) requirements. Also, the task of the manufacturer is made much easier because of the presence of
standardized component catalogs outlining their functional and non-functional attributes.

O At present, a software developer who uses the component-based approach cannot enjoy the same luxury. This is
mainly because a majority of Commercial Off The Shelf (COTS) components are specified only with functional
attributes in their interfaces. Typically, no concrete notion of quality is associated with components. Hence, the
system developer has no means to objectively compare the performance characteristics of multiple components with
the same functionality. This tends to restrict the developer's options when trying to select a component with a given
functionality during the software development process. Thus, there is a need for a framework that would allow
objective measurements of a component's Quality of Service (QoS) attributes. The creation of a Quality of Service
catalog for software components would be the first step in this direction. Such a catalog should contain detailed
descriptions about QoS attributes of software components along with the appropriate metrics, evaluation
methodologies and the interrelationships with other attributes.

As a part of the UniFrame project [1], we are creating a Quality of Service-based framework for distributed
heterogeneous software components. It is expected that this framework would initiate a standardization process in
the component-based software development community. This would prove to be beneficial to the COTS component
developer (producer) and the system developer (consumer). It would enable the component developer to advertise
the quality of his components by using the QoS metrics, and allow the system developer to verify and validate the
claims of the component developer.

The rest of the paper is organized as follows. The next section contains a discussion about work related to QoS in
other domains like networking and in the domain of software. In section 3, the QoS framework is described in detail,
along with a brief description of the UniFrame project. In section 4, as an application of the QoS framework, a
detailed case study is presented from the domain of banking. An outline of our future plans is presented in section 5.
Finally, we conclude in section 6.

2. Related Work:
The notion of QoS has been largely associated with the field of networking. A number of architectures have been
proposed for QoS guarantees for distributed multimedia systems. In [2], a quality of service architecture (QoS-A) to

S •'Department of Computer and Information Science, Indiana University Purdue University Indianapolis, { gbrahnma,
rraje, aolson } @cs.iupui.edu; 2Computer Science Department, Naval Post Graduate School (on leave from New
Mexico State University) auguston@cs.nps.navy.mil; 3Department of Computer and Information Sciences, The
University of Alabama at Birmingham, {bryant, cburt} @cis.uab.edu.

S specify and achieve the necessary performance properties of continuous media applications over asynchronous
transfer mode (ATM) networks is proposed. In QoS-A, instead of considering the QoS in the end-system and the
network separately, a new integrated approach, which incorporates QoS interfaces, control, and management
mechanisms across all architectural layers, is used. This architecture is based on the notions of flow, service contract
and flow management. A service contract makes it possible to formalize the QoS requirements of the user and the
potential degree of service commitment of the service provider. It also enables the specification of the network
resource requirements and the necessary actions to be taken in case of a service contract violation. Flow
management is utilized to monitor and maintain the QoS specified in the service contract.

The Quality Objects (QuO) framework [3] provides QoS to distributed software applications composed of
objects. QuO is intended to bridge the gap between the socket-level QoS and the distributed object level QoS. This
work mainly emphasizes on specification, measurement, control and adaptation to changes in quality of service.
QuO extends the CORBA functional IDL with a QoS description language (QDL). QDL is a suite of quality
description languages for describing QoS contracts between clients and objects, the system resources and
mechanisms for measuring and providing QoS and adaptive behavior on the client and object side. It utilizes the
Aspect Oriented Programming paradigm [4], which provides support for incorporating the non-functional properties
of components separately from the functional properties.

QoS Modeling Language (QML) is a QoS specification Language proposed in [5]. QML is an extension of
UML. It is a general purpose QoS specification language capable of describing different QoS attributes in any
application domain. If offers three main abstraction mechanisms for QoS specification: contract type, contract and
profile. A contract type represents a specific QoS attribute like: reliability or performance and it defines dimensions
that can be used to characterize a particular QoS attribute. A contract is defined as an instance of a contract type and
it represents a particular QoS specification. Profiles are used to associate contracts with interface entities such as
operations, operation arguments and operation results. Here, the QoS specifications are syntactically separate from
interface definitions, allowing different implementations of the same service interface to have different QoS
characteristics. Thus a service specification may comprise of a functional interface and one or more QoS
specifications.. The following features of the UniFrame approach, for QoS, distinguish it from other related efforts:

I. A creation of a QoS Catalog for software components containing detailed descriptions about QoS attributes of
software components including the metrics, evaluation methodologies and the interrelationships with other
attributes.

2. An integration of QoS at the individual component and distributed system levels.
3. A formal specification, based on Two-Level Grammars (TLG) [6], of the QoS attributes of each component.
4. The validation and assurance of QoS, based on the concept of event grammars [7].
5. An investigation of the effects of component composition on QoS; involving the estimation of the QoS of an

ensemble of software components given the QoS of individual components.
6. A QoS-centric iterative component-based software development process, to ensure that the end-product matches

both the functional and QoS specifications.

In this paper, we have addressed only the first two features. The details of the other features are discussed in [1].

3. QoS Framework for Software components:
3.1 UniFrame Proiect:
Our work on the QoS framework is part of the Unified Meta Component Model Framework (UniFrame) project.
The UniFrame research attempts to unify the existing and emerging distributed component models under a common
meta-model for the purpose of enabling discovery, interoperability, and collaboration of components via generative
programming techniques. This research targets not only the dynamic assembly of distributed software systems from
components built using different component models, but also the necessary instrumentation to enable QoS features
of the component and the ensemble of components to be measured and validated. The core parts of UniFrame
project are: components, service and service guarantees and infrastructure.
Component: In UniFrame, components are autonomous entities, whose implementations are non-uniform, i.e.; each
component adheres to a distributed-component model but there is no notion of a unified implementation framework.. Each component has a state, an identity, a behavior, a well-defined interface and a private implementation.
Service and Service Guarantees: A service offered by a component could be an intensive computational effort or
an access to underlying resources. In a DCS, it is natural to expect several choices for obtaining a specific service.
Thus, each component must be able to specify the quality of service (QoS) offered. The QoS is an indication given

2

. by a component, on behalf of its owner, about its confidence to carry out the required services. The QoS offered by
each component depends upon the computation it performs, the algorithm used, its expected computational effort,
required resources, the motivation of the developer, and the dynamics of supply and demand.
Infrastructure: The headhunter and Internet Component Broker are responsible for allowing a seamless integration
of different component models and sustaining cooperation among heterogeneous components. The tasks of
headhunters are to detect the presence of new components in the search space, register their functionalities, and
attempt matchmaking between service producers and consumers. It attempts at discovering components and
registering them. Headhunters may cooperate with each other in order to serve a large number of components. The
Internet Component Broker (ICB) acts as a translator between heterogeneous components. Adapter components
register with ICB and indicate their specializations (which component models they can bridge efficiently). During a
request from a seeker, the headhunter component not only searches for a provider, but also supplies the necessary
details of an ICB.
Automated System Generation: In general, different developers will provide on the Internet a variety of possibly
heterogeneous components oriented towards a specific problem domain. Once all the components necessary for
implementing a specified distributed system are available and specific problem is formulated, then the task is to
assemble them into a solution. UniFrame takes a pragmatic approach, based on Generative Programming [8,9], to
component-based programming. It is assumed that the generation environment will be built around a generative
domain-specific model (GDM) supporting component-based system assembly.
Further details about the UniFrame project can found in [1] [10] and [11].

3.2 Objectives of QoS Framework:
The QoS framework is a critical part of the UniFrame approach. The objectives of the QoS Framework are:
a) Identification of QoS attributes: A software component may be used in many different domains. Every domain

has its own constraints with respect to the QoS attributes of software components. Hence, it is necessary to
prepare a comprehensive compilation of different QoS attributes for many domains in which a software
component may be used. Such a compilation would act as a checklist for any component developer/user
interested in identifying the QoS attributes of interest.

b) Classification of QoS attributes based on:
i. Domain of usage: Such a classification would enable a component user to identify the attributes that

are relevant to his/her domain.
ii. Static / Dynamic behavior: Such a classification would be helpful to determine whether a value of a

QoS attribute is constant or varies according to the environment. This would in turn help in
determining whether the value of a QoS attribute can be improved by changes to the operating
environment.

iii. Nature of the attribute: The QoS attributes identified are classified according to their characteristics
into: Time-related attributes (end-to-end-delay, freshness), Importance-related attributes (priority,
precedence), Performance-related attributes (throughput, capacity), Integrity-related attributes
(accuracy), Safety-related attributes (security) and Auxiliary attributes (portability, maintainability).

iv. Composability of the attributes: This kind of classification is important when different components are
integrated to form a software system. It indicates whether the value of a given QoS attribute can be
used in computing the value of the corresponding QoS attribute of the resultant system. Some of the
QoS attributes are inherently non-composable, for example, parallelism constraints, priority, ordering
constraints, etc. Hence, this classification would be valuable during the system integration phase.

c) Identification of metrics for QoS attributes: QoS metrics are the units for measuring the QoS attributes of a
software component. Quantification of the QoS attributes of software components is one of the important goals
of the proposed QoS framework. Hence, there is a need for standardized metrics to compare the QoS attributes
of different software components. This would help to ensure uniformity in the expression of the QoS attributes.

d) Creation of a QoS catalog for Software Components: The QoS Catalog would act as a comprehensive source of
information regarding the quality of software components. It would contain detailed descriptions about QoS
attributes of software components including the metrics, evaluation methodologies and the interrelationships
among the QoS attributes.

e) Creation of a QoS interface for a component with different levels of details: One of the primary objectives of
the QoS framework is to make the QoS attributes an integral part of a software component. The QoS interface is
aimed at achieving this objective. The QoS interface would contain the values for QoS attributes of a software
component.

For the sake of brevity, here, only the concepts of QoS parameters and the QoS catalog are discussed.

3

. 3.3 Catalog of OoS Parameters:
The QoS Catalog for Software components would prove to be a valuable tool for:

i. The component developer by: a) acting as a reference manual for incorporating QoS attributes into the
components being developed, b) allowing him to enhance the performance of his component in an iterative
fashion by being able to quantify their QoS attributes, and c) enabling him to advertise the Quality of his
components using the QoS metrics.

ii. The system developer by: a) enabling him to specify the QoS requirements of the components that are
incorporated into his system, b) allowing him to verify and validate the claims of the component developer, c)
allowing him to make objective comparisons of QoS of components having the same functionality, and d)
empowering him with the means to choose the best suited components for his system.

At present the following QoS parameters have been selected for inclusion in the catalog. More parameters will be
included as they are identified.

1. Dependability: It is a measure of confidence that the component is free from errors.
2. Security: It is a measure of the ability of the component to resist an intrusion.
3. Adaptability: It is a measure of the ability of the component to tolerate changes in resources and user

requirements.
4. Maintainability: It is a measure of the ease with which a software system can be maintained.
5. Portability: It is a measure of the ease with which a component can be migrated to a new environment.
6. Throughput: It indicates the efficiency or speed of a component.
7. Capacity: It indicates the maximum number of concurrent requests a component can serve.
8. Turn-around Time: It is a measure of the time taken by the component to return the result.
9. Parallelism Constraints: It indicates whether a component can support synchronous or asynchronous

invocations.
10. Availability: It indicates the duration when a component is available to offer a particular service.
11. Ordering Constraints: It indicates the order of returned results and its significance.
12. Evolvability: It indicates how easily a component can evolve over a span of time.
13. Result: Indicates the quality of the results returned.
14. Achievability: It indicates whether the component can provide a higher degree of service than promised.
15. Priority: It indicates if a component is capable of providing prioritized service.
16. Presentation: It indicates the quality of presentation of the results returned by the component.

Detailed sample descriptions of two of the above-mentioned QoS parameters, Dependability and Turn-around Time,
are given below:

)Ame: ýDEPENDBILTY

Intent: It is a measure of confidence that the component is free from errors.
Description: It is defined as the probability that the component is defect free.
Motivation: 1. It allows an evaluation of degree of Dependability of a given component.

2. It allows a comparison of Dependability of different components.
3. It allows for modifications to a component to increase its Dependability.

Applicability: This parameter can be used in any system, which requires its components to offer a
specific level of dependability. Using this parameter, the Dependability of a given
component can be calculated before being incorporated into the system.

Model Used: Dependability model by J. Voas and J. Payne [12].
Metrics used: Testability Score, Dependability Score.
Influencing Factors: 1. Degree of testing.

2. Fault hiding ability of the code.
3. The likelihood that a statement in a component is executed.
4. The likelihood that a mutated statement will infect the component's state.
5. The likelihood that a corrupted state will propagate and cause the component

output to be mutated.
Evaluation Procedure: 1. Perform Execution Analysis on the component.

2. Perform Propagation Analysis on the component.
3. Calculate the Testability value of the component.

4

* 4. Calculate the Dependability Score of the component.
Evaluation Formulae: T = E * P.

T: Testability Score (a prediction of the likelihood that a particular statement in a
component will hide a defect during testing).
E: Execution Estimate (the likelihood of executing a given fault).
P: Propagation Estimate (the conditional probability of the corrupted data state
corrupting the software's output after the state gets infected).

D = 1-(1-T)N.
D: Dependability Score.
N: Number of successful tests.

Result Type: Floating Point Value between [0,1].
Static / Dynamic: Static.
Composable / Non- Composable.
Composable:
Consequence: 1. Greater amounts of testing and greater Testability scores result in greater

Dependability.
2. Lesser amount of testing is required to provide a fixed dependability score for

higher Testability Scores.
Related Parameters: Availability, Error Rate, Stability.
Domain of Usage: Domain Independent.
Error Situation: Low dependability results in:

1. Unreliable component behavior.
2. Improper execution / termination.
3. Erroneous results.

Aliases: Maturity, Fault Hiding Ability, Degree of Testing.

Name: Turn-around Time

Intent: It is a measure of the time taken by the component to return the result.
Description: It is defined as the time interval between the instant the component receives a

request until the final result is generated.
Motivation: 1. It indicates the delay involved in getting results from a component.

2. It is one of the measures of the performance offered by a component.
Applicability: This attribute can be used in any system, which specifies bounds on the response

times of its components.
Model Used: Empirical approach.
Metrics Used: Mean Turn-around Time.
Influencing Factors: 1. Implementation (algorithm used, multi-thread mechanism etc).

2. Speed of the CPU.
3. Available memory.
4. Load on the system.
5. Operating System's access policy for resources like: CPU, 1/0, memory, etc.

Evaluation Procedure: 1. Record the time instant at which the request is received.
2. Record the time instant at which the final result is produced.
3. Repeat steps 1 and 2 for 'n'representative requests.
4. Calculate the Mean Turn-around Time.

Evaluation Formulae: MTAT= [xi='* (t2-tl)] / n.
MTAT: Mean Turn-around Time.
tl: time instant at which the request is received.
t2: time instant at which the final result is produced.
n: number of representative requests.

Result Type: Floating Point Value in milliseconds.
Static / Dynamic: Dynamic.
Composable / Non- Composable.
Composable

5

Consequence: Lower the time interval between the instant the request is received and the
response is generated, lower the Mean Turn-around Time.

Related Parameters: Throughput, Capacity.
Domain of Usage: Domain Independent.
Error Situation: A high value of Internal Response Time results in:

1. Longer delays in producing the result.
2. Higher round trip time.

Aliases: Latency, Delay.

4. Case Study:
Let us assume that a private bank is trying to build a software system to automate its day-to-day operations. The
bank has decided to utilize a Client-server Distributed computing model .The bank has also chosen to assemble the
system using COTS software components instead of building the system from scratch.
The In-house software development team in the bank has come out with the following simple design for the system:

"* The system consists of two categories of components: AccountServer and AccountClient.
"* There will be two instances of the AccountServer and one instance of the AccountClient.
"* The two AccountServers are of type javaAccountServer, adhering to the java-RMI model and

corbaAccountServer, adhering to the CORBA model.
"* The components should offer the following functionality: Deposit, Withdraw and Balance check

The system development team now needs three different components meeting the above functionality requirements.
However, the bank also expects the components to satisfy certain QoS requirements. These are listed below:

* Dependability: The components will be an integral part of the bank and be responsible for keeping track of
all transactions within the bank. Hence the component should offer some guarantees regarding error free
operation.

* Turn-around Time: The transactions within the banking system have time restrictions imposed on them.
Hence, they have to produce results within a specified time frame. This requires that the components satisfy
Turn-around time requirements.

The partial UniFrame descriptions of these components are presented below:

JavaAccountServer: CorbaAccountServer:
Informal Description: Provides an account management Informal Description: Provides an account management
service. Supports three functions: javaDeposito, service. Supports three functions: corbaDeposito,
javaWithdrawo and javaBalanceo. corbaWithdrawo and corbaBalanceo.

1. Computational Attributes: 1. Computational Attributes:
a) Inherent Attributes: a) Inherent Attributes:

a. 1 id: intrepid.cs.iupui.edu/jServer a. 1 id: jovis.cs.iupui.edu/coServer
b) Functional Attributes: b) Functional Attributes:

b. I Acts as an account server b. 1 Acts as an account server
b.2 Algorithm: simple addition/subtraction b.2 Algorithm: simple addition/subtraction
b.3 Complexity: O(1) b.3 Complexity: O(1)
b.4 Syntactic Contract: b.4 Syntactic Contract:
void javaDeposit(float ip); void corbaDeposit(float ip);

void javaWithdraw(float ip) throws void corbaWithdraw(float ip) throws
overDrawException; overDrawException;

float javaBalanceo; float corbaBalanceo;
b.5 Technology: Java-RMI b.5 Technology: Java-CORBA

2. Cooperation Attributes: 2. Cooperation Attributes:
2.1) Pre-processing Collaborators: AccountClient 2.1) Pre-processing Collaborators: AccountClient

3. Auxiliary Attributes: 3. Auxiliary Attributes:

4. QoS Metrics: 4. QoS Metrics:
Dependability = 0.98 Dependability = 0.99
Turn-around Time: MTAT=70 Turn-around Time: MTAT=80

6

S JavaAccountClient:
Informal Description: Requests account services from an appropriate server and interacts with the user; implemented
as a web-based applet. Supports functions: depositMoneyo, withdrawMoneyo and checkBalanceo.

1. Computational Attributes: 2. Cooperation Attributes:
a) Inherent Attributes: 2.1) Post-processing Collaborators: AccountServer

a. 1 id: galileo.cs.iupui.edu/aClient
3. Auxiliary Attributes:

b) Functional Attributes:
b. 1 accepts user queries and presents the results

using a GUI 4. QoS Metrics:
b.2 Algorithm: Java Foundation Classes (JFC) Dependability = 0.99
b.3 Complexity: 0(1) Turn-around Time: MTAT 90
b.4 Syntactic Contract

void depositMoney(float ip);
void withdrawMoney(float ip);
float checkBalanceo;

b.5 Technology: Java Applet

Query and Returned Results:
A sample query for the above example can be informally stated as: Create an account management system that has:
Dependability > 0.97 and Turn-around Time: MTAT < 100. From the query and the available knowledge in the
GDM associated with the account management systems, a formal specification of the desired system will be
formulated for a headhunter in UniFrame. In response, the headhunter will discover the following choices:

1. Java-Java System: a) javaAccountClient -- Dependability = 0.99, Turn-around Time: MTAT = 90, Java
Applet Technology b) javaAccountServer -- Dependability = 0.98, Turn-around Time: MTAT = 70, Java-
RMI technology c) Infrastructure Needed -- JVM and Appletviewer.

2. Java-CORBA System: a) javaAccountClient -- Dependability = 0.99,Turn-around Time: MTAT= 90, Java
Applet Technology b) corbaAccountServer - Dependability = 0.99,Turn-around Time: MTAT= 80, Java-
RMI technology c) Infrastructure Needed -- JVM, Appletviewer, ORB, Java-CORBA bridge.

QoS of the assembled system:
Each component has two QoS parameters: 1) static - dependability and 2) dynamic - Turn-around Time. The desired
QoS of the assembled system includes these parameters as well. For this reason the GDM will contain a rule that
will compute the value of the static parameter for the assembled system. In this example, the dependability for the
assembled system is calculated using the following formula: (1.0 - ((1.0 - DI) + (1.0 - D2)), Where, D, and D2 are the
dependability values of the constituent components, yielding a value of 0.97 for the Java-Java System and a value of
0.98 for the Java-CORBA System.

For the dynamic parameter, the generator will provide the necessary instrumentation for taking the clock and
calculating the Turn-around Time at run-time. The knowledge about metrics for the QoS parameter' Turnaround
Time' is represented in terms of Duration attribute for events of the type method -call, and the generic computation
over the event trace that takes the clock and sums up those durations yielding a measured Turn-around Time for the
accounting system.

One of the two example systems, mentioned in the query, will be implemented with the code for carrying out event
trace computations according to user-supplied test cases. These test cases will be executed to verify that the
accounting system satisfies the QoS specified in the query. If the system is not verified, it is discarded. This
verification process is carried out for each of the generated accounting systems (two in the above example). Then,. the one with the best QoS is chosen.

5. Future Plans:
Incorporation of the above-mentioned QoS parameters into the component interface is our next step. This would
involve the creation of a QoS interface of the component along the lines of a functional (or syntactical) interface of a

7

. component. This QoS interface would include all the necessary information about those QoS parameters that are
selected by the component developer for inclusion in a given component. This would be followed by a formal
specification of these QoS parameters and a mechanism for ensuring them at the individual component level and at
the system level. The issue of Quality of Service of an ensemble of software components, i.e., a software system
built out of components would also be addressed. This would involve the issues of component composition and
composability of QoS Parameters.

6. Conclusion:
This paper has presented a QoS framework for software components, which is a part of the UniFrame project [1].
The objectives of the QoS framework include: a) the creation of a QoS catalog designed to quantify the QoS
attributes of software components, b) incorporation of QoS attributes into the component interface, c) a formal
specification of these attributes, d) a mechanism for ensuring these attributes at individual component level and at
the system level, and e) a procedure to estimate the QoS of an ensemble of software components. Due to the space
restrictions, only the concepts of QoS parameters and QoS catalog are presented here. The QoS framework would
enable the component developer to advertise the quality of his components by using the QoS metrics, and allow the
system developer to verify and validate the claims of the component developer. Although a simple case study is
provided in this paper, the principles of the proposed approach are general enough to be applied to any larger
applications.

Acknowledgments: The material presented in this paper is based upon work supported by, or in part by, a) the U.S.
Office of Naval Research under award number N00014-01-1-0746, b) the U.S. Army Research Laboratory and the
U.S. Army Research Office under contract/grant number 40473-MA.

7. References:

1) R. Raje, M. Auguston, B. Bryant, A. Olson, C. Burt. A Quality of Service - based framework for creating
distributed heterogeneous software components, Technical Report, Department of Computer and Information
Science, Indiana University Purdue University Indianapolis, 2001.

2) A. Campbell. A Quality of Service Architecture -Ph.D. Thesis, Computing Department, Lancaster University,
1996.

3) BBN Corporation, Quality Objects Project, URL: http://www.dist-systems.bbn.com/tech/QuO, 2001.

4) Communications of ACM special issue on Aspect Oriented Programming, vol.44, No 10, October 2001.

5) S. Frolund, J. Koistinen. Quality of Service specification in distributed object systems, Distributed System
Engineering Journal, Vol.5, No. 4, December, 1998

6) A. Van Wijngaarden. Orthogonal Design and Description of a formal Language. Technical Report,
Mathematisch Centrum, Amsterdam, 1965.

7) M. Auguston. Program Behavior Model Based on Event Grammar and it's Application for Debugging
Automation. In Proceedings of the 2 nd International Workshop on Automated and Algorithmic Debugging,
1995.

8) Batory, D. and Chen, G. and Robertson, E. and Wang, T. Design Wizards and Visual Programming
Environments for Gen Voca Generators. IEEE Transactions on Software Engineering, pages 441-452, 2000.

9) Czarski, K., and Eisenecker, U.W. Generative Programming: Methods, Tools, and Applications. Addison -
Wesley, 2000.

10) R. Raje. "UMM: Unified Meta-object Model for Open Distributed Systems", Proceedings of the fourth IEEE
International Conference on Algorithms and Architecture for Parallel Processing pages 454-465
(ICA3PP' 2000).

11) R. Raje, M. Auguston, B. Bryant, A. Olson, C. Burt, "A Unified Approach for the Integration of Distributed
Heterogeneous Software Components", Proceedings of the 2001 Monterey Workshop (Sponsored by DARPA,
ONR, ARO and AFOSR), Monterey, California, 2001.. 12) J. Voas, J. Payne, Dependability Certification of Software Components, Journal of Systems and Software, NO.
52, pp. 165-172, 2000.

8

SESEC2002
April 2002

S Quality of Service (QoS) Standards for
Model Driven Architecture'

Carol C. Burt2, Barrett R. Bryant 2, Rajeev R. Raje3, Andrew Olson3, Mikhail Auguston4

Abstract

A number of middleware technologies have evolved over the last ten years to address specific
business problems such as enabling process optimization via systems integration, rapid
development of new applications, web enabling features for customers, and mechanization of
supply chains. Software architects increasingly utilize models to represent different viewpoints
of a business solution. Separation of concerns is a key characteristic of good software design. In
an effort to facilitate the design of business systems in a platform independent matter, the Object
Management Group (OMG) is currently progressing the Model Driven Architecture (MDA)[1].
Model Driven Architecture maintains a clean separation of Platform Independent Models (PIMs)
that represent the domain from Platform Specific Models (PSMs) that expose details related to a
middleware technology. In this way a single PIM can be mapped to multiple implementation
technologies (such as OMG CORBA®, Sun J2EE, Microsoft COM+, and W3C Web Services).
While all of the component-based technologies have established a concise means for describing
functional contracts (the interface or services offered by a component in the architecture), none of
these technologies have embraced architecture or a vocabulary for specifying non-functional
Quality of Service (QoS) contracts. Non-functional contracts are necessary to analyze the ability
of a service to meet QoS constraints when used in a composition. A component may, for
example, guarantee a certain performance level (given a fixed set of constraints) or guarantee
protection of features and/or information classified as a protected resource. The UniFrame [2]
research (which includes identification and progression of requisite standards activities) envisions
a plug and play component environment where QoS contracts are part of a component description
and middleware bridges and quality of service instrumentation are generated by component
integration toolkits. That is, business components that utilize diverse platform technologies may
be easily integrated, and they will offer both functional and non-functional service contracts. A
difficulty in progressing this work is the lack of a standard vocabulary for software component
Quality of Service (QoS). Following this work, syntax for expressing QoS in component models
and the mappings that form the transformations from diverse viewpoints of a model must also be
explored and standardized. This research includes supporting and participating in the progression
of such standards. This paper introduces a path for standards in the area of Quality of Service
and discusses how this standardization would progress the goal of using commercial off the shelf
(COTS) components in a heterogeneous system composition.

1 This research is supported by U. S. Office of Naval Research award N00014-01-1-0746.
2 Department of Computer and Information Sciences, The University of Alabama at Birmingham,

Birmingham, AL 35294, USA, {cburt, bryant} @cis.uab.edu
3 Department of Computer and Information Science, Indiana University Purdue University Indianapolis,
Indianapolis, IN 46202, USA, {rraje, aolson} @cs.iupui.edu
"4 Computer Science Department, New Mexico State University, Las Cruces, NM 88003, USA,
mikau@cs.nmsu.edu

SESEC2002
April 2002

S
Introduction

Enterprises are increasingly dependent upon multiple middleware technologies that enable new
business paradigms by weaving together legacy systems with advanced technology. These
technologies support core business functionality, enable distributed business systems, integrate
business processes and allow companies to communicate with customers, suppliers, and business
partners. While it is possible to construct such systems, it requires that the developer be aware of
the nuances of the diverse middleware technologies. This problem must be resolved for the
promise of software component technology (plug & play / off the shelf interoperability) can be
fully realized. In addition, the increased complexity of this environment makes it impossible to
predict the non-functional aspects of such a system until after it is constructed. That is, static
QoS relies on the design expertise of software architects and engineers and metrics and test
scenarios must be hand crafted on a case-by-case basis to determine if a composition is
acceptable. As distributed systems become omni-present with many mission-critical, the notion
of QoS-oriented software development will become essential. Such an approach is necessary to
ensure the reliability and high confidence of distributed software systems.

The Unified Component Meta Model Framework (UniFrame) [2] research project is an attempt to
unify the existing and emerging distributed component models under a common meta-model for
the purpose of enabling the discovery, interoperability, and collaboration of components via
generative software techniques. A great deal of work is underway in standards organizations
such as OMG and World Wide Web Consortium (W3C) that provides the foundation for
UniFrame. The UniFrame research builds upon work in standards organizations, targeting the
dynamic assembly of distributed software systems from components built in different component
models and the ability to express quality of service (QoS) requirements in such a way that
generative design and implementations can utilize them. This is a necessity to enable timely
(perhaps dynamic) assembly of e-business relationships (for example to select a replacement
component when a primary component fails to deliver on QoS guarantees). It is also necessary
in time and safety critical environments where failure to meet quality of service requirements
results in significant system failures.

Related Work

Although QoS parameters and associated metrics have been widely used in networking, there is
no standard vocabulary for discussing QoS as it relates to distributed computing and component
based solutions. For example, the CORBA® Components Specification only uses the term
"quality of service" with regard to events and whether or not they are transactional in nature [3].
The Java2 Enterprise Edition (J2EE) specification [4] states, "We expect J2EE products to vary
widely and compete vigorously on various aspects of quality of service. Products will provide
different levels of performance, scalability, robustness, availability, and security. In some cases
this specification requires minimal levels of service. Future versions of this specification may
allow applications to describe their requirements in these areas." Today, there is no standard
vocabulary that we can utilize to define QoS requirements for any component technology.

In the fall of 2000, the OMG Analysis and Design Task Force considered a draft Request for
Proposal (RFP) for a UML profile for Modeling Quality of Service as it relates to real-time
systems [5]. This RFP called for a framework and categorization of QoS characteristics. In
January 2002, the OMG Analysis and Design task force issued an RFP for a "UMLTM Profile for

2

SESEC2002
April 2002

S Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms" [6]. This
RFP solicits proposals for a UML profile or Meta Object Facility (MOF) meta-model that defines
standard paradigms of use in modeling quality of service and fault-tolerance aspects of systems.
This is the first of a series of RFPs that have the goal of significant benefits to the UML user
community engaged in high-quality robust system development. The key mandatory
requirements of this RFP are listed in Figure 1.

A General Quality of Service Framework

To ensure consistency in modeling various qualities of service, submissions shall define a standard

framework or, reference model, for QoS modeling in the context of the UML. This shall

include:

" A general categorization of different kinds of QoS; including QoS that are fixed at design time
as well as ones that are managed dynamically

"* Integration of different categories of QoS for the purpose of QoS modeling of system aspects.

"* Identification of the basic conceptual elements involved in QoS and their mutual relationships.
This shall include the ability to associate QoS characteristics to model elements (specification), a
generic model of the system aspects involved in QoS-associated collaboration and their
functional interactions and use cases (usage model), and a generic model of how QoS allocation
and decomposition is managed.

* A coherent set of stereotypes, tagged values, and constraints as necessary to represent the
identified QoS properties constructing a UML Profile.

A Definition of Individual QoS Characteristics

Submissions shall define QoS characteristics, particularly those important to real-time and high

confidence systems, which describe the fundamental aspects of the various specific kinds of QoS

based on the QoS categorization identified in the framework. These shall include but are not

limited to the following:

"* time-related characteristics (delays, freshness)

"* importance-related characteristics (priority, precedence)

"* capacity-related characteristics (throughput, capacity)

"* integrity related characteristics (accuracy)

"* fault tolerance characteristics (mean-time between failures, mean-time to repair, number of
replicas)

A coherent set of stereotypes, tagged values, and constraints as necessary to represent the identified
QoS properties constructing a UML Profile.

Figure 1: OMG RFP - UML Profile for QoS - Mandatory Requirements

0

SESEC2002
April 2002

As part of the UniFrame research, we have outlined our approach to a QoS-based framework for
creating distributed heterogeneous software components [7]. The QoS-based method in
UniFrame is made up of three steps:

1. The creation of a catalog for QoS parameters (and/or metrics),
2. A formal specification of these parameters, and
3. A mechanism for ensuring these parameters, both at each individual component level and

at the entire system level

UniFrame leverages work by Zinky, Bakken & Schantz [8] with the goal of providing a catalog
of QoS parameters, indicating how parameters might be described. There are many possible QoS
parameters that a component (and its developer) can use to indicate the associated service. Some
of these parameters may be general in nature, while others may be pertain to a specific domain.
The goal of creating the QoS catalog is two fold: a) it assists the component developer (or the
system integrator) in selecting the necessary QoS parameters for the component (or system) under
construction, and b) it enables the developer (or integrator) to ensure the necessary QoS
guarantees by integrating the selected QoS parameters into the assurance process.

We have recently published the initial version of our QoS catalog [9]. At present the following
QoS parameters have been selected for inclusion in the catalog.

I. Dependability: a measure of confidence that the component is free from errors.
2. Security: a measure of the ability of the component to resist an intrusion.
3. Adaptability: a measure of the ability of the component to tolerate changes in resources

and user requirements.
4. Maintainability: a measure of the ease with which a software system can be maintained.
5. Portability: a measure of the ease with which a component can be migrated to a new

environment.
6. Throughput: indicates the efficiency or speed of a component.
7. Capacity: indicates the maximum number of concurrent requests a component can serve.
8. Turn-around Time: a measure of the time taken by the component to return the result.
9. Parallelism Constraints: indicates whether a component can support synchronous or

asynchronous invocations.
10. Availability: indicates the duration when a component is available to offer a particular

service.
11. Ordering Constraints: indicates the order of returned results and its significance.
12. Evolvability: indicates how easily a component can evolve over a span of time.
13. Result: indicates the quality of the results returned.
14. Achievability: indicates whether the component can provide a higher degree of service

than promised.
15. Priority: indicates if a component is capable of providing prioritized service.
16. Presentation: indicates the quality of presentation of the results returned by the

component.

Uniframe also leverages work on Quality Objects and adaptive middleware. Quality Objects [10]
is a framework for providing QoS to software applications composed of objects distributed over
wide area networks. QuO bridges the gap between socket-level QoS and distributed object level
QoS, emphasizing specification, measuring, controlling, and adapting to changes in QoS.
RAPIDware [11] is an approach to component-based development of adaptable and dependable

4

SESEC2002
April 2002

0 middleware. It uses rigorous software development methods to support interactive applications
executed across heterogeneous networked environments.

Frolund & Koistinen [12] point out that deciding which quality of service properties should be
provided by individual components is an important part of the design process. They define a
Quality-of-Service specification language (QML) and they show how the Unified Modeling
Language (UML) can be extended to support the concepts of QML. In addition, they suggest a
technique for representation of QML constructs in terms of ISO IDL [12] [13]. Frolund and
Koistinen were working with a platform specific model (CORBA). The OMG currently is
progressing an RFP for a UML profile for Quality of Service that will provide the meta-model
necessary to use UML to model QoS in a platform independent manner.

The OMG work will standardize how static (design related) and dynamic (environmentally
influenced) QoS characteristics are expressed in UML models. We are working within the OMG
community to introduce our efforts, contribute to the analysis of the submissions, and ensure that
our research is aligned with industry standard vocabulary as we progress techniques that enable
QoS-aware systems to utilize generative software tools. We will also be experimenting with
alternative syntax for representation of QoS characteristics such as event grammar [14].

Model Driven Architecture with QoS parameters

In addition to the work that OMG has done with distributed computing interoperability
* (CORBA®/IIOP), the OMG has also progressed standards in the domain of modeling and meta-

modeling: the Unified Modeling Language (UML Tm) and Meta-Object Facility (MOF TM). Some
of the analysis and design standards include the precise mappings that define the transformation
of model information into interface definitions in ISO Interface Definition Language (IDL).

The latest initiative - Model Driven Architecture (MDATM) - is the way that the OMG will
standardize Platform Independent Models (PIMs) that can be mapped to multiple Platform
Specific Models such as CORBA®, Java2 Enterprise Edition (J2EE), and Web Services for
implementation. This approach holds promise for the standardization of components that could
be used in collaborative environments as a result of a common semantic model. To fully realize
the potential of this approach, Quality of Service (QoS) catalogs, formal parameterization of
Platform Specific Models, and ultimately instrumentation mappings must also be standardized
within the Model Driven Architecture roadmap.

Figure 2 outlines the type of models that are common in a MDA approach. Quality of Service
parameters must be introduced into each model and the transformations (or mappings) that occur
as models are refined must be standardized. The current RFP is merely the beginning - providing
a vocabulary and syntax for expressing QoS in UML. As we move beyond the QoS catalog, our
research will focus on the constraints that are placed on transformations as a result of the quality
requirements and the generative techniques for ensuring that metrics can be gathered.

5

SESEC2002
April 2002

i "The business (or domain) models are the
view of the business person. Typically
domain models document the business from a

Business Niodels logical perspective. Business models often
lack details necessary for good softw are

design, however, the resulting IT models must
be consistent with the business model.

The Quality of Service expressed in the -
business moedels description (natural 9

a
language) must be tranformed into model E

annotations using a standard QoS o
vocabulary. Static (design level) QoS

decisions are first considered in this
transformation. The Ratform Independent Model is the

Information Technology Plerspective. These
models carve the business into softw are
components with interfaces for collaboration.

Ratform Independent These models include use cases where the
Meodels (PI" system (or components of the system) are

actors. They include enough detail to enable
an architect familiar with a particular

transformed into the specific 0be conponent infrastruture to create a mapping.

language for the target platform (f or,,
example for CORBA this rright be the a

E
LIMt profile for QoS or perhaps o

QML). Static (design level) QoS
decisions must be madelrefined at

this step and nay result in factoringof interfaces.ti A Ratform Specific Model is the realization ofa PIM in a particular technology's definition
syntax. For exarmple, a CORBA PSM could

Platform Specific Nodels be expressed in the UMLI.:'rofle for CORBA

(PSM) or in ISO IXL. A Web Services Ratf orm
Specific Mbdel night be expressed in WSDL.
The PSM must account for the architecture of
the Ratform, including interface definition

Uilrrnatety the QoS enabled design must language and the rmessaging paradigm
result in softw are. The design level QoS
w ill be part of the implementation (having

been taken into account in inteface E
design and imnplementation design). The

dynanic QoS requirements must result in a

generated instrumentation for varidation
purposes. This instrumentation may Utimately the model must be realized in

require component and/or platform softw are. The extent to which the PSM
custorization. supports logic will determine the extent to

which softw are can be generated. The
Executable Representation language that supports the PSM typically falls

(code) short of the full capabilities of a programrning

language; how ever, conceptually the
softw are can be considered the final PSM

Figure 2 - QoS considerations during model transformations

Quality of Service Issues related to Interface Generation

It should be noted that there are existing standards for using generative techniques to create
interfaces from UML models. For example, the OMG Meta Object Facility (MOF) [15] allows
the generation of interfaces from Unified Modeling Language UML models. A careful analysis
of the resulting interface specifications makes it clear, however, that distribution is not a key
factor in the algorithms used. This has a direct impact on the ability to meet quality of service
requirements in a distributed solution. For example, in a distributed system, quality of service
requirements for performance, scalability and/or security would dictate the use of iterators, the
factoring of interfaces into separate query and administrative operations and the use of structure
and/or objects passed by value. The current standards in this area tend to focus on data access0 with accessors and mutators and relationship traversal. This is acceptable (perhaps even
desirable) in a single machine environment, but unacceptable for highly distributed

6

SESEC2002
April 2002

. communications and collaborations [I]. It has long been accepted that systems with distributed
components require specialized design to ensure performance and ease of security administration.
That is, there is a need to take QoS parameters and use-cases into account when designing
component interfaces. For a model driven generative technique to be successful, models must be
parameterized with QoS standard parameters as defined in a catalog. In addition, use case
scenarios must also be formally expressed so that they can be used as input to an interface
generator. That is, given a parameterized domain model, semantically equivalent interfaces (and
the bridges between them) must be generated.

The OMG Architecture Board produced a paper that describes the technical details of the Model
Driven Architecture (MDA) [1]. This document outlines several areas where significant
research is required before the MDA vision can be fully realized. One of the most important
areas is directly related to the UniFrame research. It states: "It is generally agreed that the MOF-
IDL mapping is in need of upgrading. [Footnote: The problem is that the generated interfaces are
not efficient in distributed systems. Firstly, the mapping predates CORBA valuetypes and thus
does not make use of them. Secondly, a class with N attributes is always mapped to a CORBA
interface with N separate getter/setter operations. In a distributed system one would want to
group attributes based upon use cases, cache attribute values, or implement other optimizations to
reduce the number of distributed calls]. Realistically we will probably have to accept the fact that
for the foreseeable future, the automatically generated transformation from PIM to PSM will have
to be enhanced by humans. As we gain more experience we will be able to define various
patterns and allow them to be selected in some way."

This is recognition that a generated interface must be optimized using quality of service and
usage scenarios requires research in techniques for integrating QoS into a generative
programming model. It also recognizes that we do not currently have a way to express the quality
of service requirements in such a way that generative techniques can be trusted during the design
process.

Conclusion

The ability to provide QoS parameterization of models is recognized in the Object Management
Group community and standards in this area will lead to the ability to generate Platform Specific
Models that take quality of service characteristics into account. Since there has been very little
work on progressing Quality of Service specifications for component based architectures, this
work has the potential to impact how the Object Management Group (OMG) defines QoS
parameterization for Model Driven Architecture and the ability to more clearly specify and
measure component feasibility for a particular task. This standardization of QoS catalogs and
parameters is a pre-requisite to benchmarking and service validation instrumentation. In addition,
the Java Community Process (JCP) has a history of working with OMG to progress consistent
standards. The expectation is that any Quality of Service parameters would be applicable for
CORBA®, J2EETM, and Web Services component architectures. In addition, this standardization
provides a foundation for future standards. Quality of Service characteristics must have syntax
for expression in every artifact of the analysis, design and development process. The design
patterns must be documented and exploited in such a way that generative techniques can be
applied. In addition, formal specifications will allow instrumentation necessary for measuring
quality of service to be come an integral part of middleware and component implementation
frameworks.

7

SESEC2002
April 2002

The UniFrame research project is investigating techniques and patterns used when static QoS is a
consideration during refinement of models and software design, and is utilizing emerging
technology in generative programming for QoS instrumentation with a goal of progressing
standards for QoS instrumentation when the technology matures. By ensuring that software
components can be tested against standard Quality of Service feature sets we progress the goal of
using more commercial off the shelf (COTS) components in heterogeneous system compositions.

References

[1] Object Management Group. 2001. Model Driven Architecture: A Technical Perspective.
Technical Report. Document # ormsc/2001-07-01. Framingham, MA: Object Management
Group. July 2001.

[2] Rajeev R. Raje, Barrett Bryant, Mikhail Auguston, Andrew Olson, Carol Burt. "A Unified
Approach for the Integration of Distributed Heterogeneous Software Components", Proceedings
of the 2001 Monterey Workshop on Engineering Automation for Software Intensive System
Integration, pp: 109-119, Monterey, California, 2001.

[3] Object Management Group. 2001. CORBA 3.0 CORBA Component Model Chapters.
Document # ptc/2001-11-03. Framingham, MA: Object Management Group.

[4] Sun Microsystems. 2001. Java 2 Platform Enterprise Edition Specification v]. 3, Available
via ftp from www.java.sun.com. Sun Microsystems.

[5] Object Management Group. 2000. UML Profile for Modeling Quality of Service as it relates
to real-time systems. Draft Request for Proposal. OMG document ad/00-1 2-07. Framington,
MA. Note: This RFP was never issued.

[6] Object Management Group. 2002. UMLTAM Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms. Request for Proposal. OMG document ad/02-01-07.
Framington, MA. Note: This RFP issued January 2002 with submissions due June 24, 2002.

[7] Rajeev R. Raje, Mikhail Auguston, Barrett Bryant, Andrew Olson, Carol Burt. 2001. A
Quality of Service-based Framework for Creating Distributed Heterogeneous Software
Components. Technical Report. Indiana University Purdue University Indianapolis.

[8] Zinky, J.A.,Bakken, D.E., and Schantz, R., 1995. Overview of Quality of Service for
Distributed Objects, In Proceedings of the Fifth IEEE Dual Use Conference.

[9] G. Brahnmath, R. Raje, A. Olson, M. Auguston, B. Bryant and C. Burt. 2002. Quality of
Service Catalog for Software Components. Technical Report #TR-CIS-0219-01. Indiana
University Purdue University Indianapolis.

[10] BBN Corporation, 2001. Quality Objects (QuO) Project, URL: http://www.dist-
systems.bbn.com/tech/QuO.

[11] Michigan State University, 2001. RAPIDware: Component-Based Development ofAdaptable
* andDependable Middleware, URL: http://www.cse.msu.edu/rapidware/.

8

SESEC2002
April 2002

. [12] S. Frolund, J. Koistinen. 1998. Quality of Service specification in Distributed Object
Systems, Proceedings of the 4 'h USENIX Conference on Object-Oriented Technologies and
Systems (COOTS '98), Santa Fe, New Mexico, April 1998.

[13] S. Frolund, J. Koistinen. 1999. Quality of Service Aware Distributed Object Systems. 5 h

USENIX Conference on Object-Oriented Technologies and Systems (COOTS '99). May 1999.

[14] M.Auguston, 1998. Building Program Behavior Models, Proceedings of the European
Conference on Artificial Intelligence ECAI-98, Workshop on Spatial and Temporal
Reasoning, Brighton, England, August 23-28, 1998, pp.1 9-26 .

[15] Object Management Group. 2000. Meta Object Facility. Document formal/2001-11-02.
Framingham, MA, Object Management Group.

CORBA® is a registered Trademark of the Object Management Group(OMG). CCM, UML,
MOF and MDA are trademarks of OMG.

JAVA, J2EE, and EJB are trademarks of Sun Microsystems.

Other trademarks, which may be used in this document, are the properties of their respective
owner corporations.

9

6
An Architecture for the UniFrame Resource Discovery

Service'

Nanditha N. Siram, Rajeev R. Raje, Andrew M. Olson

Department of Computer and Information Science

Indiana University Purdue University Indianapolis

723 W. Michigan Street, SL 280

Indianapolis, IN 46202-5132, USA

Email: {nnayani, rraje, aolson } @cs.iupui.edu

Barrett R. Bryant, Carol C. Burt
Department of Computer and Information Sciences

The University of Alabama at Birmingham

115A Campbell Hall, 1300 University Boulevard

Birmingham, AL 35294-1170, USA

Email: {bryant, cburt}@cis.uab.edu

Mikhail A uguston

Department of Computer Science

New Mexico State University

PO Box 30001, MCS CS

Las Cruces, NM 8803

Email: mikau@cs.nmsu.edu

Abstract

Frequently, the software development for large-scale distributed systems requires
combining components that adhere to different object models. One solution for the
integration of distributed and heterogeneous software components is the UniFrame
approach. It provides a comprehensive framework unifying existing and emerging
distributed component models under a common meta-model that enables the discovery,
interoperability, and collaboration of components via generative software techniques. This
paper presents the architecture for the resource discovery aspect of this framework, called
the UniFrame Resource Discovery Service (URDS). The proposed architecture addresses
the following issues: a) dynamic discovery of heterogeneous components, and b) selection

* This research is supported bythe U. S. Office of Naval Research under the award number N00014-01-1-

0746.

of components meeting the necessary requirements, including desired levels of QoS
(Quality of Service). This paper also compares the URDS architecture with other Resource
Discovery Protocols, outlining the gaps that URDS is trying to bridge.

1. Introduction

Software realizations of distributed-computing systems (DCS) are currently being based on
the notions of independently created and deployed components, with public interfaces and
private implementations, loosely integrating with one another to form a coalition of
distributed software components. Assembling such systems requires either automatic or
semi-automatic integration of software components, taking into account the quality of
service (QoS) constraints advertised by each component and the collection of components.
The UniFrame Approach (UA) [12][13] provides a framework that allows an
interoperation of heterogeneous and distributed software components and incorporates the
following key concepts: a) a meta-component model (the Unified Meta Model - UMM
[11]), b) an integration of QoS at the individual component and distributed system levels,
c) the validation and assurance of QoS, based on the concept of event grammars, and e)
generative rules, along with their formal specifications, for assembling an ensemble of
components out of available choices. The UniFrame approach depends on the discovery of
independently deployed software components in a networked environment. This paper

* describes an architecture, URDS (UniFrame Resource Discovery Service), for the resource
discovery aspect of UniFrame. The URDS architecture provides services for an automated
discovery and selection of components meeting the necessary QoS requirements. URDS is
designed as a Discovery Service wherein new services are dynamically discovered while
providing clients with a Directory style access to services. The result of using URDS, the
UA and its associated tools is a semi-automatic construction of a distributed system.

The rest of the paper is organized as follows. Section 2 discusses related resource
discovery protocols. Section 3 discusses the UniFrame approach and the URDS
architecture. An example is presented in section 4. A brief comparison of URDS and other
approaches is presented in section 5. Details of an initial prototype and experimentations
are indicated in section 6 and the paper concludes in section 7.

2. Related Work

The protocols for resource discovery can be broadly categorized into: a) Lookup
(Directory) Services and Static Registries and b) Discovery Services. A few prominent
approaches are briefly discussed below.

Universal Description, Discovery and Integration (UDDI) Registry: UDDI [16]
specifications provide for distributed Web-based information registries wherein Web
services can be published and discovered. Web Services in UDDI are described using Web
Services Description Language (WSDL) [4] -- an XML grammar for describing the
capabilities and technical details of Simple Object Access Protocol (SOAP) [1] based web

* services.

CORBA Trader Services: The CORBA Trader Service [10] facilitates 'matchmaking'

between service providers (Exporters) and service consumers (Importers). The exporters

register their services with the trader and the importers query the trader. The trader will

find a match for the client based on the search criteria. Traders can be linked to form a

federation of traders, thus making the offer spaces of other traders implicitly available to

its own clients.

Service Location Protocol (SLP): SLP [6] architecture comprises of User Agents (UA),
Service Agents (SA), and Directory Agents (DA). UAs perform service discovery on behalf

of clients, SAs advertise the location and characteristics of services and DAs act as

directories which aggregate service information received from SAs in their database and

respond to service requests from UAs. Service requests may match according to service

type or by attributes.

JINI: JINI [15] is a Java-based framework for spontaneous discovery. The main

components of a JINI system are Services, Clients and Lookup Services. A service registers
a "service proxy" with the Lookup Service and clients requesting services get a handle to
the "service proxy" from the Lookup Service.

Ninja Secure Service Discovery Service (SSDS): The main components of the SSDS [5],
[9] are: Service Discovery Servers (SDS), Services and Clients. SSDS shares similarities
with other discovery protocols, with significant improvements in reliability, scalability,

* and security.

3. UniFrame and UniFrame Resource Discovery Service (URDS)

The Directory and Discovery Services, described earlier, mostly do not take advantage of
the heterogeneity, local autonomy and the open architecture that are characteristics of

DCS. Also, a majority of these systems operate in one-model environment (e.g., CORBA
Trader service assumes only the presence of CORBA components). In contrast, a software
realization of a DCS will most certainly require a combination of heterogeneous
components - i.e., components developed under different models. In such a scenario, there
is a need for a discovery system that exploits the open nature, heterogeneity and local
autonomy inherent in DCS. The URDS architecture is one such solution for the discovery
of heterogeneous and distributed software components.

3.1. UniFrame Approach

3.1.1. Components, Services and QoS

Components in UniFrame are autonomous entities, whose implementations are non-
uniform. Each component has a state, an identity, a behavior, well-defined public
interfaces and private implementation. In addition, each component has three aspects: a)
Computational Aspect: it reflects the task(s) carried out by each component, b)
Cooperative Aspect: it indicates the interaction with other components, and c) Auxiliary
Aspect: this addresses other important features of a component such as security and fault
tolerance.

0
Services, offered by a component in UniFrame, could be an intensive computational effort
or an access to underlying resources. The QoS is an indication given by a software
component about its confidence to carry out the required services in spite of the constantly
changing execution environment and a possibility of partial failures.

3.1.2. Service Types

Components in UniFrame are specified informally in XML using a standard format. XML
[3] is selected as it is general enough to express the required concepts, it is rigorously
specified, and it is universally accepted and deployed. The UniFrame service type, which
represents the information needed to describe a service, comprises of:

ID: A unique identifier comprising of the host name on which the component is running
and the name with which this component binds itself to a registry will identify each
service.

ComponentName: The name with which the service component identifies itself.

Description: A brief description of the purpose of this service component.

Function Descriptions: A brief description of each of the functions supported by the
service component.

Syntactic Contracts: A definition of the computational signature of the service interface.. Function: Overall function of the service component.

Algorithm: The algorithms implemented by this component.

Complexity: The overall order of complexity of the algorithms implemented by this
component.

Technology: The technology used to implement this component (e.g., CORBA, Java RMI,
etc.).

QoS Metrics: Zero or more Quality Of Service (QoS) types. The QoS type defines the QoS
value type. Associated with a QoS type is the triple of <QoS-type-name, measure, value>
where QoS-type-name specifies the QoS metric, for example, throughput, capacity, end-to-
end delay, etc. Measure indicates the quantification parameter for this type-name like
methods completed/sec, number of concurrent requests handled, time, etc. Value indicates
a numeric/string/boolean value for this parameter. We have established a catalog of
Quality of Service metrics that are used in UniFrame specifications [2].

Figure 1 illustrates a sample UniFrame specification. This example is for a bank account
management system with services for deposit, withdraw, and check balance. This example
assumes the presence of a Java RMI server program and a CORBA server program, which
are available to interact with the client requesting their services. We will return to this
example in detail when we describe the resource discovery service.

0

.rC'o~nonenr%'eLYxeý> AccountScryer

.czOescrior ~Provides an Account M2anagement System -. /l)esceiptioz>

--F'-.unionx>-scaipvw sit
-rJTu'rncaioz r• j ax, aD: epo o sit •./ -,ni-zltonz >

_C £ Cg. o n :>,jav aNjith draw .Fnztion -
•--• n~ion j av aB a] an c e .--,/'•uznc~r-o. n :

.c/Fz•nctionDescrip~ion7 >

.C~o mp R tciJwtL4 n alAttibzutex s-

.-rJD> intrepid. cs.iupui. edu/AccountServer -r7>

.•/ompz*tknciaL~f~ttebus >

rFunzcxon> Acts as Account Server -/1
7
unction

.-. Algorindzm s. Simple Addition/Subtraction .calgoridzm>

<Goner> void j av aD ep o sit (float ip) .•zConta
<Contz t> void javaWithdraw throws OverDraw:Exception-C-/ontIrvzcts-
<Conzvrcrtf. float jav aB alan ce(•ont '

-/Sy nz XatiCo n ZIctYZ
<Te-chnrwo~g, >. Jay a-R]VlT •/Tec~hnwo•>s

CPIp e ngAidbiu tes. >
rPr-~pr~~essin cg~o torrs>- AccountClient o

.. /oioperZigA txrib u x tes

-cA xd tU aryAt trib at er
.cAf b iliy •, bl,•o .cVAr ob ilit >.

.e/AtzoidIa ryAttrib i t es>

ndnAvexilynabilirty r="easixr e" 1nd n>- 90

Figure 1: Sample UniFrame Specification in XML

3.2 URDS

The main components of the URDS architecture (illustrated in Figure 2) are: i) Internet
Component Broker (ICB), ii) Headhunters (HHs), iii) Meta-Repositories, iv) Active-
Registries, v) Services, and vi) Clients. Other details in the figure will be explained in the
following sections. The numbers indicate the flow of activities in the URDS. These are
explained, in detail, in the context of an example in section 3.2.7. The URDS architecture
is organized as a federation in order to achieve scalability. Figure 3 illustrates the
federation aspect of URDS.

Every ICB has zero or more headhunters attached to it. The ICBs in turn are linked
together with unidirectional links to form a directed graph. The URDS discovery process is
"administratively scoped", i.e., it locates services within an administratively defined
logical domain. 'Domain' in UniFrame refers to industry specific markets such as
Financial Services, Health Care Services, Manufacturing Services, etc.

Figure 2: URDS Architecture

Figure 3: Federated Organization in UiRDS

3.2.1 Internet Component Broker (ICB)

The ICB acts as an all-pervasive component broker in the interconnected environment
providing a platform for the discovery and seamless integration of disparate components.
The ICB is not a single component but is a collection of services comprising of the Query
Manager (QM), the Domain Security Manager (DSM), Adapter Manager (AM), and the
Link Manager (LM). It is envisioned that there will be a fixed number of ICBs deployed at
well-known locations hosted by corporations or organizations supporting this initiative.

The functionality of the ICB is similar to that of an Object Request Broker. However, the
ICB has certain key features that are unique. It provides component mappings and
component model adapters. The ICB, in conjunction with headhunters, provides the
infrastructure necessary for scalable, reliable, and secure collaborative business using the
interconnected infrastructure. The functionalities of the ICB are:

" Authenticate the users (Headhunters and Active Registries) in the system and
enforce access control over the multicast address resources for a domain with the
help of the Domain Security Manager (DSM).

" Attempt at matchmaking between service producers and consumers with the help of
the Headhunters and Query Manager. ICBs may cooperate with each other in order
to increase the search space for matchmaking. The cooperation techniques of ICBs
are facilitated through the Link Manager (LM).

Act as a mediator between two components adhering to different component
models. The mediation capabilities of the ICB are facilitated through the Adapter
Manager (AM).

Domain Security Manager (DSM)

The DSM handles secret key generation and distribution and enforces the group
membership and access control to multicast resources through authentication and use of

* access control lists (ACL). The resources being guarded are the multicast addresses
allocated to a particular domain. The DSM serves as an authorized third party, which
maintains an inclusion list of Principals (headhunters or registries), corresponding to a
domain. DSM has an associated repository (database) of valid principals, passwords,
multicast address resources and domains. Every Headhunter or Active Registry is
associated with a domain. The Active Registries associated with a domain have
components registered with them, which belong to that domain. The Headhunter in turn
detects Registries, which belong to the same domain as itself, and hence the service
components detected by the headhunter will belong to a particular domain. The Principal
(authenticated user), is allowed access only to the multicast address mapped to the domain
with which it is associated. A Principal that wishes to participate in the discovery process
contacts the DSM with its credentials (id, password, domain). The DSM authenticates the
principal and checks its authorizations against the domain ACL. The DSM returns a secret
key and a multicast address mapped to the corresponding domain to a valid principal. In
case the principal is a Headhunter the DSM registers the contact information of the
headhunter with itself. The QM to propagate queries uses this information.

Query Manager (QM)

The QM uses a natural language parser [7] to translate a service consumer's natural
language-like query into an XML based query. The QM parses the XML based query to
generate a structured query language statement and dispatches this query to the
'appropriate' Headhunters. The QM obtains the list of registered Headhunters from the
DSM. The HH returns the list of matching service providers. The QM in conjunction with

0
the LM is also responsible for propagating the queries to other linked ICBs. The functions
performed by the QM are:

" Parse a service consumer's natural language-like query and extract the keywords
and phrases pertaining to various attributes of the components UniFrame
specification.

"* Extract the consumer-specified constraints, preferences and policies to be applied
to the various attributes.

"* Compose the extracted information into an XML based query.

"• Translate the XML based query to a structured query language statement.

"* Dispatch this structured query to all the headhunters associated with the domain on
which the search is being performed and also forward the query to the Link
Manager, which will propagate the query to other ICBs.

"* The headhunters will query the Meta-Repository and return a list of components
matching the search criteria to the QM.

"* QM will wait for a specified time period for results to be returned from the
headhunters/other ICBs before timing out.

"* The client has the option to specify search-scoping policies to affect the time spent
* on the search process.

Link Manager (LM)

ICBs are linked to form a Federation of Brokers (see Figure 3) in order to allow for an
effective utilization of the distributed offer space. ICBs propagate the search query issued
by the Clients to other ICBs to which they are linked apart from the headhunters with
which they are associated. The LM performs the functions of the ICB associated with
establishing links and propagating the queries. Links represent paths for propagation of
queries from a source ICB to a target ICB. The LM supports the following operations:

"* Register: LMs register with each other to create unidirectional links from the
Source LM to the Target LM. The registration information comprises of the
location information of the LM.

" Query: The query operation is responsible for propagating the query from the
source LM to the list of Target LMs with which the Source LM is registered.

" Failure Detection: This involves keeping track of LMs that may no longer be
active due to failures. Periodically each LM sends a unicast message to all other
LMs that are registered with it. LMs receiving the message maintain a cache of the
pairs <Sender LM address, Time-stamp of receipt>. At regular time intervals the
receiving LMs note the 'freshness' of the information they hold and purge the
Sender's information, which they deem to be 'stale'. Staleness is determined by the
time elapsed between the receipt of the LM address through the unicast
communication and the current time.

Link Traversal Control: The Link Traversal Control mechanism used in the LM is
similar to that of CORBA Trader Services. The necessity for Link Traversal
Control arises due to the nature of LM linkage, which allows arbitrary, directed
graphs of LMs to be produced. This can introduce two problems: i) a single LM
can be visited more than once, and ii) loops can occur. To ensure that a search does
not enter into an infinite loop, a hop count is used to limit the depth of links to
propagate a search. The hop count is decremented by one before propagating a
query to other LMs. The search propagation terminates at the LM when the hop
count reaches zero.

Adapter Manager (AM)

The AM serves as a registry/lookup service for clients seeking adapter components. The
adapter components register with the AM and while doing so they indicate their
specialization (i.e., which heterogeneous component models they can bridge efficiently).
Clients contact the AM to search for adapter components matching their needs. The AM
utilizes adapter technology, each adapter component providing translation capabilities for
specific component architectures. The adapter components achieve interoperability using
the principles of wrap and glue technology [8].

3.2.2 Headhunters

Another critical component of URDS is a headhunter. The headhunters perform the
following tasks: a) Service Discovery: detect the presence of service providers
(Exporters), b) register the functionality of these service providers, and c) return a list of
service providers to the ICB that matches the requirements of the consumer (Importers)
requests forwarded by the QM.

The service discovery process utilizes a search technique based on multicasting. Once
deployed in the system, the headhunters periodically multicast their presence to a multicast
group. The multicast group address is obtained from the DSM. The active registries, that
also obtain a multicast group address from the DSM, listen for these multicast messages.
The active registries maintain a cache of the pairs <headhunter address, time-stamp of
receipt> and periodically send response messages to all the headhunters in their cache. The
headhunter in turn maintains a cache of the pairs <registry address, time-stamp of
receipt>. The Headhunter intermittently queries the Registries for the component
information of service providers they contain. During the registration, the headhunter
stores into the meta-repository all the details of the service providers, including the
UniFrame specifications. The headhunter uses this information during matching. A
component may be registered with multiple headhunters. The functionality of headhunters
makes it necessary for them to communicate with Active Registries belonging to any
model, implying that the cooperative aspect of headhunters be universal. The headhunters
need to also address the issues of failures and security.

Failure Detection: Failure detection involves keeping track of service exporters
that may no longer be active in the system for various reasons. Headhunters
achieve failure detection at the level of detecting failures of the active registries,
which hold the service exporters. The headhunter keeps track of the time at which it

obtains registry location information from various active registries. At regular time
intervals the headhunter notes the 'freshness' of the information it holds and purges
the registry information, which it deems to be 'stale'. 'Fresh' or 'Stale' are
determined based on the time elapsed between the receipt of the registry address
through unicast communication and the current time. This process is based on the
principle that if a registry is still active in the system, it will respond to the
headhunter with its location information and thus have a recent timestamp. A
registry which for whatever reason is unable to contact the headhunter with its
information will hold a 'stale' timestamp and it will be assumed that all service
exporter components held by this registry are no longer available for rendering their
services.

Multicast Security: This involves securing the multicast data transmission
mechanism from security threats such as eavesdropping, and masquerading. The
headhunter uses Secret Key Encryption to ensure security of transmitted data. The
secret key used is a symmetric key wherein the sender and receiver use the same
key for purposes of encryption and decryption.

3.2.3 Meta-Repository

The Meta-Repository is a data store that serves to hold service information of exporters
adhering to different models. The service information stored by the Meta-repository

* consists of: a) Service type name, b) Details of its informal specification, and c) Zero or
more QoS values for that service for each of the components. The implementation of a
Meta-Repository is database oriented. A Meta-Repository is a passive component, i.e., a
headhunter brings information to the meta-repository.

3.2.4 Active Registry

The native registries (e.g., RMI Registry or CORBA registry) are extended to have the
following features:

, Activeness: The registries are modified to be able to listen to multicast messages
from the headhunter and respond with their host IP Address.

9 Introspection Capabilities: The registries are extended to not only keep a list of
component URLs of those components registered with them but also their detailed
UniFrame specifications. This is achieved by querying the components (using
principles of introspection) to obtain the URL of their XML based specifications.
The registries parse the specification and maintain the details in a memory resident
table, which is returned to the headhunter upon request.

e Failure Detection Of Headhunters: Failure detection involves keeping track of
headhunters, which may no longer be active in the system for reasons such as
network or node failure. The active registries keep track of the time at which it
obtains headhunter location information from various headhunters through
multicast. At regular intervals the active registries note the 'freshness' of the
headhunter information they hold and purge the headhunter information, which
they deem to be 'stale'. 'Fresh' or 'stale' are determined based on the time elapsed

between the receipt of the headhunter address through multicast communication
and the current time.

3.2.5 Service Exporter Components

Service Exporter Components are implemented in different models, e.g., Java RMI,
CORBA, EJB, etc. The components are identified by their Service Offers comprising of
service type name, b) informal UniFrame specification, and c) zero or more QoS values for
that service. The component registers its interfaces with its local registry. The component
interface contains a method, which returns the URL of its informal specification. The
informal specification is stored as a XML file adhering to certain syntactic contracts to
facilitate parsing. These service exporter components will be tailored for specific domains,
such as Financial Services, and will adhere to the relevant standards in those domains.

3.2.6 Clients

Clients are Service Requesters searching for services matching certain functional and non-
functional requirements.

4. An Example

Table I outlines the interactions between the URDS components in servicing a client query
for assembling an account management system. The rows of the table are numbered

* corresponding to the flow of control shown in Figure 2. The result of this interaction will
be an ensemble of components, which may be assembled into a complete system as
described in [12].

Table I: Interactions between URDS components

This indicates the interactions between the principals (Headhunters/Active

registries) and the DSM.

The principals contact the DSM with their authentication credentials in
order to obtain the secret key and multicast address for group
communication (many to one interaction).
<name="headhunterl", password="secretl", domain="financial">
<name="registry2", password="secret2", domain="financial">

The DSM authenticates the principals and returns a secret key and multicast
address to a valid principal (one to many interaction).

<secretkey = key.dat, multicast_address="224.2.2.2">

2 This indicates the interactions between Service Exporter Components and active

registries.

* Service exporter components register with their respective registries (many
to one interaction) -- <id=" intrepid. cs. iupui. edu/AccountServer" >

0
These registries in turn query these components for their UniFrame
Specification (one to many interaction).

<introspect property = "uniFrameSpecURL">

0 The components respond with the URL at which the specification is located
(any to one interaction).
<url="C: \Account System\AccountServerSpec.xml">

This indicates the interactions between Headhunters and Active Registries.

* Headhunters periodically multicast their presence to a multicast group
addresses (one to many interaction).

<headhunterlocation = phoenix.cs.iupui .edu/headhunterl>

"* Active Registries, which are listening at this group address, respond to
Headhunters' messages by passing their information to Headhunters (many
to many interaction).

<registrylocation = magellan.cs.iupui.edu/registry2>

" Headhunters intermittently query the active registries to which they hold a
reference for the information of all the components registered with them
(one to many interaction). The active registries respond by passing the list of
components registered with them and the detailed UniFrame specification of
these components (many to many interaction).

This indicates the interactions between a Headhunter and a Meta-Repository.

* Headhunters persist the component information obtain ed from the active
registries onto the Meta-Repository (one to one interaction).

* Headhunters query Meta-Repository to retrieve component information (one
to one interaction).

<query="SELECT * FROM componentTable A, functionTable B WHERE
(A.ID = B.ID) AND ((description LIKE%account%) OR (description
LIKE %system%)) AND (end2endDelay<lO) AND (availability>90)">

* Meta-Repository returns search results to headhunter (one to one
interaction).

This indicates the interactions between the QM and clients.

* Clients contact the QM and specify the functional and non-functional search
criteria (many to one interaction).0

" The natural language-like client query is as follows:

"Create an account management system that has end-to-end delay < 10 ms
and availability > 90% preference maximum availability".

"Figure 4 shows the translated XML based query.

<Query>
<Description> Account System •/Descripion>
<Domain> Financial <lDomain>
<End2EndDelay constraint=-"<" >10 <1End2EndDelay>
<Availabiity constraint = ">" preference ="max"> 90 <lAvailabifity>

</Query>

Figure 4: Processed XML query

" The QM returns the search results to the clients (one to many interaction).

< component 1: id=". .", description="...", availability="...",-;

component 2: id="..", description="...", availability="..."...;

component 3: id="..", description="...", availability="...",...;>

6 This indicates the interaction between the QM and DSM.

"* QM contacts DSM for contact information of registered headhunters
belonging to the domain of client query (one to one interaction).

"* DSM responds with list of registered headhunters (one to one interaction).
<phoenix. cs. iupui .edu/headhunterl

magellan.cs. iupui .edu/headhunter2>

This indicates the interactions between the QM and headhunters.

* The QM propagates Client's query to all headhunters registered with it,
which fall in the domain of the Client's search request (one to many
interaction).

* The headhunters respond to the QM query with search results matching the
criteria (many to one interaction).

8 This indicates the interactions between adapter components and AM.

0 Adapter components register with the AM, which is nmning at a well-
known location (many to one interaction).

O9
This shows the interactions between the clients and the AM.

* Clients contact the AM at the well-known location at which it is running
with requests for specific adapter components (many to one interaction).

* The AM checks against its repository for matches and returns the results to
the clients (one to many interaction).

This shows the interactions between QM and LM.

* The QM propagates the query to the LM (one to one interaction).

* LM returns search results to QM (one to one interaction).

I1 This shows the interactions between the LM of one ICB and target LMs of other

ICBs with which this LM is registered.

* The LM propagates the search query issued by the QM to the target LMs
(one to many interaction).

* The source LM receives the result responses from these target LMs (many
to one interaction).

5. Comparison between URDS and Other Resource Discovery
Protocols

A brief comparison between URDS and other approaches is provided below.

" Interoperability: The other resource discovery protocols provide services for
specific models and interoperations can be achieved only through proxies. URDS
addresses the issue of non-uniformity by providing for discovery and coordination
between components implemented using diverse models.

"* Network Usage: Unlike other protocols, URDS clients and services do not
participate in active discovery thus cutting down on the periodic communication
required for the process of discovery. Instead, the active nature of the extended
native registries allows the discovery process and removes the additional burden of
developing 'active' components.

" Query Processing and Matchmaking: Unlike other approaches, which rely on Java-
based or XML-based matching, the URDS supports a natural language-like query
mechanism. This provides flexibility in formatting queries and during the
matchmaking process.

"" Domain of Discovery: In URDS the contextualization of the search space is logical
and dictated by the industry specific markets. In other discovery protocols the

notion of "administrative scope" is associated with the topology of the network
domain.

" Security: The URDS security model addresses many of the common threats, which
may occur during the discovery process. SSDS is another service notable for its
robust security model.

" QoS: UniFrame incorporates of the notion of QoS as applied to software
components and integrates this aspect into the service specification and the
matchmaking process.

6. Prototype and Experimentation

A preliminary prototype [14] of the URDS has been implemented using the J2EE version
1.4 software environment. The core architectural components (domain security manager,
query manager, link manager, headhunters and active registries) have been implemented as
Java-RMI based services.

The repositories (domain security manager's repository and meta repository) have been
implemented using Oracle version 8.0. The Web-based components (JSPs), which service
client interactions, are placed in a Tomcat 4.0 Servlet/JSP container.

The unicast communication between the core architectural components is achieved through
* JRMP (Java Remote Method Protocol) and the multicast communication between the

headhunters and the active registries is achieved through Multicast sockets based on
UDP/IP. The database connections are established using the JDBC (Java Database
Connectivity) APIs and the user interaction is achieved through a browser front-end using
the HTTP protocol. The security infrastructure, of URDS, is implemented by the security
and cryptography APIs that form a part of Java Cryptography Architecture and Java
Cryptographic Extension frameworks.

Preliminary experiments were carried out on this prototype to observe the performance of
URDS. The experimental setup consisted of Sun SPARC machines connected by an
Ethernet. The experiments contained one ICB, one headhunter, and one active registry
(enhanced version of Java RMI registry). A single client was used to issue query requests,
which consisted of different QoS constraints. The measurements were averaged over one
hundred trials. The following times were measured:

" Average Authentication Time: It is the average time taken by the domain security

manager to authenticate a principal (i.e., headhunter and active registry).

"* Average Query Service Time: It is the average time taken to service a query.

"* Average Registry Discovery Time: It is the average time taken by a headhunter to
discover an active registry.

"* Average Component Information Retrieval Time: It is the average time taken by
the headhunter to retrieve component information from an active registry.

0

These initial experiments showed a value of 690 ms for the average authentication time.
The average query time and the registry discovery time showed a marginal increase with
an increasing number of registered components; while the average component retrieval
information time increased linearly with the number of components (as expected).

The current prototype is able to discover only Java-RMI components, thus making it
homogeneous. Efforts are underway to make it heterogeneous, i.e., able to discover
components created using other models (such as CORBA, .NET, etc.) also. The current
prototype also does not include the federation aspect.

7. Conclusion

The paper has presented an architecture that facilitates the semi-automatic construction of a
distributed system by providing for the dynamic discovery of heterogeneous components
and selection of components meeting the necessary requirements, including desired levels
of QoS. The URDS architecture addresses issues such as interoperability, QoS of software
components, scalability, fault tolerance, security and network usage. Interoperability is
achieved by discovering components developed in several different component models.
The discovery mechanism uses multicasting to detect native registries/lookup services of
various component models that are extended to possess 'active' and 'introspective'
capabilities. The component specification captures their computational, functional, co-
operational, auxiliary attributes and QoS metrics. Flexibility in query formatting is
achieved by providing support for natural language-like client requests. As a scalability
mechanism URDS is organized in a federated hierarchical structure. Failure tolerance is
handled through periodic announcements by entities and through information caching.
Security is provided through authentication of the principals involved, access control to
multicast address resources, and encryption of data transmitted. URDS provides a directory
based discovery service which is scalable secure and fault tolerant. Although, the current
prototype does not address all the features of the URDS architecture, it has created a basis
for validating the concepts behind URDS. Efforts are underway to extend the current
prototype that will enable a validation of all the features presented in this paper.

References

[1] Box, D., et al., "Simple Object Access Protocol (SOAP) 1.1", W3C, May 2000,
http://www.w3.org/TR/SOAP.

[2] Brahmnath, G., Raje, R. R., Olson, A. M., Auguston, M., Bryant, B. R., Burt, C. C., "A
Quality of Service Catalog for Software Components," to appear in Proceedings of the
2002 Southeastern Software Engineering Conference, 2002.

[3] Bray, T., Paoli, J., Sperberg-McQueen, C. M. "Extensible Markup Language (XML)
1.0 (Second Edition)," W3C, October 2000, http: //www.w3c.org/xml.

[4] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., "Web Services
Description Language (WSDL) 1.1," W3C, March 2001 http://www.w3.org/TR/wsdl.

[5] Czerwinski, S. E., Zhao, B. Y., Hodes, T. D., Joseph, A. D., Katz, R. H., "An
Architecture for a Secure Service Discovery Service," Proceedings of Mobicom '99,
1999. http://ninja.cs.berkeley.edu/dist/papers/sds-mobicom.pdf

[6] Guttman, E., "Service Location Protocol: Automatic Discovery of IP Network
Services," IEEE Internet Computing, vol. 3, no. 4, 1999, pp. 71-80.

[7] Lee, B.-S., and Bryant, Barrett R., "Automated Conversion from Requirements
Documentation to an Object-Oriented Formal Specification Language," Proceedings of
SAC 2002, the ACM Symposium on Applied Computing, 2002, pp. 932-936.

[8] Luqi, Berzins, V., Ge, J., Shing, M., Auguston, M., Bryant, B. R., Kin, B. K., "DCAPS
- Architecture for Distributed Computer Aided Prototyping System," Proceedings of
RSP 2001, the 12th Rapid Systems Prototyping Workshop, 2001, pp. 103-108.

[9] Ninja, "The Ninja Project," http://ninja.cs.berkeley.edu, 2002.

[10] Object Management Group, "Trading Object Service Specification," Object
Management Group 2000. ftp://ftp.omg.org/pub/docs/formal/0O-06-27.pdf.

[11] Raje, R. R., "UMM: Unified Meta-object Model for Open Distributed Systems",
Proceedings of ICA3PP 2000, 4th IEEE Int. Conf. Algorithms and Architecture for
Parallel Processing", 2000, pp. 454-465.

[12] Raje, R., Auguston, M., Bryant, B. R., Olson, A., Burt, C., "A Unified Approach for
the Integration of Distributed Heterogeneous Software Components", Proceedings of
the Monterey Workshop on Engineering Automation for Software Intensive System
Integration, 2001, pp. 109-119.

[13] Raje, R., Auguston, M., Bryant, B. R., Olson, A., Burt, C., "A Quality of Service-
based Framework for Creating Distributed Heterogeneous Software Components",
Technical Report, Department of Computer and Information Science, Indiana
University Purdue University Indianapolis, 2002.

[14] Siram, N. N., "An Architecture for the UniFrame Resource Discovery Service", MS
Thesis, Indiana University Purdue University Indianapolis, Spring 2002.

[15] Sun Microsystems, "Jini Architecture Specification, Version 1.2," Sun Microsystems,
December 2001, http://www.sun.com/jini/.

[16] uddi.org, "UDDI Technical White Paper", September 2000,
http://www.uddi.org/pubs/IruUDDITechnicalWhitePaper.pdf

S

EDOC 2002

Quality of Service Issues Related to Transforming
Platform Independent Models to Platform Specific Models*

Carol C. Burt Rajeev R. Raje

Barrett R. Bryant Andrew Olson Mikhail Auguston

University ofAlabama Indiana University Purdue New Mexico State

Birmingham University Indianapolis University

cburt, bryant@cis.uab.edu rraje, aolson@cs.iupui.edu mikau@cs.nmsu.edu

Abstract must be hand crafted on a case-by-case basis to

determine if a composition is acceptable. These

The UniFrame research project is proposing a problems must be resolved for the promise of software

Unified Component Meta Model Framework component technology to be fully realized.

(UniFrame) that includes Quality of Service (QoS)
contracts. Today it is the role of the software architect, The Unified Component Meta-Model Framework

based on experience, to design platform specific (UniFrame) [1] research is an attempt to unify

solutions that will meet QoS requirements. As we refine distributed component models under a common meta-

algorithms for model transformations, we must identify model for the purpose of enabling the discovery,

these QoS-aware design patterns and utilize them interoperability, and collaboration of components via

during model transformations. Our research includes generative software techniques. This research targets

supporting and participating in the exploration of the dynamic assembly of distributed software systems

generative techniques as they relate to QoS from components under different component models,

requirements (both static and dynamic) and the and explores how the quality of service (QoS)

* standardization of QoS-aware transformations. This requirements influences the design of components and

paper explores how QoS requirements can impact their compositions.

decisions related to model transformation (using UMIL
for Platform Independent Modeling and ISO IDL for the Today, software architects leverage their experience

Platform Specific Model). It explores a series of QoS in designing distributed systems when refining business

related design issues that must be considered as and information technology models to ensure the quality

platform independent models are refined for specific of service requirements are met. To enable the use of

component platforms. generative techniques as models are refined, these
experience-based design patterns must be formalized.

1. Introduction As a part of this research, we plan to document the effect
of design decisions on attaining quality of service

Enterprises are increasingly dependent upon multiple requirements and explore techniques for providing the

middleware technologies that enable new business instrumentation necessary to measure QoS features. In

paradigms by weaving together legacy systems with this research we are focusing on two key QoS aspects for

advanced technology. This technology supports core distributed component solutions: the security access

business functionality, enables distributed business control and the performance.

systems, integrates business processes and enables This paper explores the experience-based design
companies to communicate with customers, suppliers, Thi s related to experice-baseiresin
and business partners. While it is possible to construct considerations related to quality of service requirements
heterogeneous component systems, it requires that the during the model transformations when the Model
developernbeous awaronent of sthem, nnes u the t d re Driven Architecture [2] techniques are used. It expandsdeveloper be aw are of the nuances of the diverse o r v o s w r 3 h ti e tf e t n a d h t a ei
middleware technologies. In addition, the increased on previous work [3] that identified standards that are in
complexity of this environment makes it impossible to progress as well as additional standards that are needed
predict the non-functional aspects of such a system until for the definition of QoS-based service contracts. For
after it is constructed. That is, metrics and test scenarios illustrative purposes, it presents design considerations

O" This research was supported by the U. S. Office of Naval
Research under the award number NO0O 14-01-1-0746.

-1 -

EDOC 2002

S f or the security and the performance during the Architectural vision, which is consistent with those of
transformation of a simple Platform Independent Model this research, includes standards that enable the use of
(described in UML) to a CORBA model (described in generative techniques for construction of interoperability
ISO IDL). The future goals of our research include the bridges between platform technologies. While this
identification and standardization of metrics necessary to vision is appealing, there is a great deal of research to be
validate the patterns and a mechanism to allow QoS done before this is feasible. The problem lies not in
related design patterns to be expressed as model determining a single transformation from a platform
parameters. independent model to a platform specific model, but in

understanding the appropriate transformation based on

2. Model Driven Architecture quality of service requirements. Some of the model
transformation issues related to the performance and

Model driven architecture techniques are not new; security access control are discussed in this paper.

business and process modeling have been used for many
years to capture requirements of information systems. 3. Relevant Standards and Known Issues
As object-oriented analysis and design techniques
matured, the Unified Modeling Language (UML) was OMG has standardized technologies [18] that include
standardized by OMG and became a popular technique a UML profile for CORBA and a UML profile for
for expressing both domain/business models and models Enterprise Distributed Object Computing (EDOC). In
of information systems. addition, the Java Community Process has standardized

a UML profile for Java2 Enterprise Edition (J2EE).
OMG's Model Driven Architecture (MDA) [2] These profiles, however, do not consider how to model

initiative facilitates the standardization of Platform QoS related aspects.
Independent Model (PIMs) and the transformation of
those models to multiple Platform Specific Models for The OMG Meta-Object Facility provides a standard
implementation (such as CORBA, J2EE, or Web for generation of interfaces from MOF compliant UML. Services). In this way a single PIM can be used as the models. However, it is well known that there are issues
basis for multiple implementation technologies, and with with this mapping for distributed solutions. The OMG
standardization of the transformation algorithms, Architecture board produced a paper that describes the
appropriate bridges can be generated. Standardizing technical details of the Model Driven Architecture
platform independent models is a natural extension of (MDA) [3]. This document outlines areas where
existing OMG analysis and design standards for research is required before the MDA vision can be fully
modeling and meta-modeling services. Standardizing realized. The paper states: "It is generally agreed that
multiple transformations to diverse technology platforms the MOF-IDL mapping is in need of upgrading. The
is a natural extension of the OMG mission to define problem is that the generated interfaces are not efficient
interoperability standards. in distributed systems. Firstly, the mapping predates

CORBA valuetypes and thus does not make use of them.
Many OMG standards contain UML models to Secondly, a class with N attributes is always mapped to

describe the domain model and/or semantics of services. a CORBA interface with N separate getter/setter
Typically these domain models (expressed or implied) operations. In a distributed system one would want to
are independent of the CORBA platform (evidenced by group attributes based upon use cases, cache attribute
the fact that they have been leveraged for use in J2EE values, or implement other optimizations to reduce the
and other technology platforms). In the past, OMG has number of distributed calls. Realistically we will
only standardized the transformations to CORBA probably have to accept the fact that for the foreseeable
specific model(s) expressed in ISO IDL; however, it is future, the automatically generated transformation from
expected that many of the existing services will be PIM to PSM will have to be enhanced by humans. As
standardized for alternative platform technologies, we gain more experience we will be able to define

various patterns and allow them to be selected in some
This focus on the Model Driven Architecture is a way."

catalyst for the consideration of the effects of Quality of
Service (QoS) requirements on computing models. At In addition, security requirements often influence the
present, we have a limited ability to express QoS technique utilized in transformation of a platformS requirements as model parameters and even less independent model to a platform specific model. It is
definition of the algorithmic requirements to satisfy widely accepted within the Model Driven Architecture
specific quality of service demands. The Model Driven community that generated interfaces must be optimized

-2-

EDOC 2002

O using the quality of service and usage scenarios. This necessary QoS parameters for the component (or
requires research on the appropriate techniques for system) under construction, and b) it enables the
integrating QoS into the generative programming model developer (or integrator) to ensure the necessary QoS

[4] is necessary before standards can be progressed in guarantees by integrating the selected QoS parameters
this area. into the assurance process. We have created a

preliminary version of the QoS catalog in [15]. In

4. MDA and Quality of Service addition to identifying and describing different QoS
parameters, this catalog also classifies them and

Although QoS parameters and associated metrics provides models for their compositions.

have been widely used in networking, there is no
standard vocabulary for discussing the QoS as it relates Other relevant research work in this area includes

to distributed computing and component-based Frolund and Koistinen [9] who point out that deciding

solutions. For example, the CORBA® Components which quality of service properties should be provided

Specification only uses the term "quality of service" by individual components is an important part of the

with regard to events and whether or not they are design process. They define a Quality-of-Service

transactional in nature [5]. The Java2 Enterprise specification language (QML) and they show how the

Edition (J2EE) specification [6] clearly states the Unified Modeling Language (UML) can be extended to

expectation that J2EE products will vary widely and support the concepts of QML. They also show how to

compete vigorously on various aspects of quality of represent QML constructs in terms of ISO Interface

service. Such products will provide different levels of Definition Language (IDL) [9] [10]. There are also

performance, scalability, robustness, availability, and case studies where Object Constraint Language (OCL) is

security, although in some cases the specification being used a mechanism for the annotation of UML

requires minimal levels of service. models for the purpose of expressing security constraints
[11]. Recent work in adaptive systems extends the work

A standard vocabulary is the first step toward in Quality Objects (QuO) [12] with security specific

* progressing Model Driven Architectures that include strategies that use the QuO contract definition language

QoS parameterization and/or QoS contracts. This is one (QDL) [13].

of the goals of the UniFrame research.
We expect standards activity in this area will

4.1 Previous and Related Work consider and leverage the experience and results of these
efforts.

As a part of the UniFrame research, we have outlined
an approach to a QoS-based framework for creating 4.2 Recent Standards Activity

distributed heterogeneous software components [7].
The QoS-based method in UniFrame is made up of three In January 2002, the OMG Analysis and Design task

steps: force issued a RFP (Request for Proposals) for a
"UMLTM Profile for Modeling Quality of Service and

1. The creation of a catalog for QoS parameters (or Fault Tolerance Characteristics and Mechanisms" [14].

metrics), This RFP solicits proposals for a UML profile or Meta

2. A formal specification of these parameters, and Object Facility (MOF) meta-model that defines standard

3. A mechanism for ensuring these parameters, paradigms of use in modeling quality of service and

both at each individual component level and at fault-tolerance aspects of systems. This is the first of a

the entire system level, series of RFPs that have the goal of significant benefits
to the UML user community engaged in high-quality

Our work leverages the research work by Zinky, robust system development. The mandatory
Bakken and Schantz [8] with a goal of providing a requirements of this RFP are listed in Figure 1.
catalog of QoS parameters and indicating how
parameters might be described. There are many possible As distributed systems are becoming more omni-
QoS parameters that a component (and its developer) present with many of them handling mission-critical
can use to indicate the associated service. Some of these applications, the notion of QoS-oriented software
parameters may be general in nature, while others may development is of paramount importance. Such aS pertain to a specific domain. The goal of creating the quality-oriented approach, in addition to providing
QoS catalog is two fold: a) it assists the component seamless access to heterogeneous components, will also
developer (or the system integrator) in selecting the ensure the reliability and a high confidence of

-3-

EDOC 2002

1. A General Quality of Service Framework distributed systems software. As indicated earlier, the
need for standardization of a quality of service

To ensure consistency in modeling various qualities of vocabulary was recognized early in our research and we
service, submissions shall define a standard framework or, are carefully tracking the work of the OMG in this area
reference model, for QoS modeling in the context of the UML. as we continue to progress our work in the development
This shall include: of a quality of service catalog [15].

" A general categorization of different kinds of QoS;
including QoS that are fixed at design time as well as ones 5. Models Transformations
that are managed dynamically

" Integration of different categories of QoS for the purpose UML is a graphical notation for expressing models; it

of QoS modeling of system aspects. is important to understand that many alternative
"modeling syntax exist - for example, the XML Model*A coherent set of stereotypes, tagged values, and Interchange (XMI) format leverages Extended Mark-up

constraints as necessary to represent the identified QoS Language (XML) to express Meta-Object Facility

properties constructing a UML Profile. Lnug X L oepesMt-betFclt
(MOF) compliant models. While there is a standard

" Identification of the basic conceptual elements involved in UML profile for CORBA, the ISO IDL continues to be
QoS and their mutual relationships. This shall include the the most common notation used to define a CORBA
ability to associate QoS characteristics to model elements model. Our research is also exploring the use of two-
(specification), a generic model of the system aspects level grammar (TLG) as a formal mechanism for
involved in QoS-associated collaboration and their evel sgrgmmar [16]. a s a notal m e us eful
functional interactions and use cases (usage model), and a expressing models [16]. These text notations are useful
generic model of how QoS allocation and decomposition is for computers as they process textural or binary syntax
managed. more efficiently than graphics. Mappings from one

notation to another are often produced and used for
various analysis tasks (sometimes preserving all model

2. A Definition of Individual QoS Characteristics information, and sometimes losing information which
has no equivalent in an alternative modeling syntax).

Submissions shall define QoS characteristics, particularly For example, IDL models may be expressed in the UML

those important to real-time and high confidence systems, profile for CORBA. Such mappings are not
transformations - they are merely alternative

which describe the fundamental aspects of the various specific representations of the same model.

kinds of QoS based on the QoS categorization identified in the

framework. These shall include but are not limited to the A model transformation occurs when models are

following: refined and details are added for the purpose of focusing
on a particular implementation technology or an aspect

* time-related characteristics (delays, freshness) of the domain model. Model transformations are used to
* importance-related characteristics (priority, precedence) document different "levels of abstractions",

* capacity-related characteristics (throughput, capacity) "viewpoints" or "aspects" of an information system.
Models that comply to a specific meta-model may utilize

* integrity related characteristics (accuracy) generative techniques for the transformations; leveraging

* fault tolerance characteristics (mean-time between failures, information that the generator knows regarding the
mean-time to repair, number of replicas) target implementation platform and/or parameterizations

provided by the software architect. To fully realize the
potential of the MDA, the Quality of Service (QoS)

3. A coherent set of stereotypes, tagged values, and catalogs, the formal parameterization of Platform
constraints as necessary to represent the identified QoS Independent Models, and ultimately the instrumentation
properties constructing a UML Profile. generation rules must be standardized within the Model

Figure 1: OMG RFP Driven Architecture roadmap.

UML Profile for QoS
Mandatory Requirements

-4-

EDOC 2002

The business (or domain) models are the view
of the business person. Typically domain
models document the business from a logical

Business Models perspective. Business models often lack
details necessary for good software design,
however, the resulting IT models must be
consistent with the business model.

The Quality of Service expressed in the
business model description (natural

language) must be tranformed into model a

annotations using a standard QoS 0

vocabulary. Static (design level) QoS
decisions are first considered in thistrnsor aton The Platform Independent Model is the

Information Technology Perspective.

These models carve the business into software
Models (PIM) components with interfaces for collaboration.

Paradigm Independent They include use cases where the system (or
components of the system) are actors. They
explore exception conditions and quality of
service requirements as model considerations.
They include enough detail to enable an
architect familiar with a particular platform
technology to create a transformation.
It is useful to progress to PIMs that are Platform

Platform Independent Independent but which conform to a particular
Models (PIM) technology paradigm (such as component

Paradigm Dependent technology, distributed objects, or asynchronous
messaging)

QoS model annotatations must be
m"sgig

transformed into the specific QoS
language for the target platform (for

example for CORBA this might be the
UML profile for QoS or perhaps QML). 2

Static (design level) QoS decisions
must be made/refined at this step and P

may result in factoring of interfaces. A Platform Specific Model is the realization of
a PIM in the definition syntax of a particular
technology platform. For example, a
CORBA PSM could be expressed in the UML

Platform Specific Models Profile for CORBA or in ISO IDL. A Web
(PSM) Services Platform Specific Model might be

expressed in WSDL. The PSM must account
for the architecture of the Platform, including

Utilmately the QoS enabled design must interface definition language and the
result in software. The design level QoS messaging paradigm.

.0will be part of the implementation (having
been taken into account in inteface

design and implementation design). The
dynamic QoS requirements must result in

generated instrumentation for validation
purposes. This instrumentation may Ultimately the model must be realized in

require component and/or platform software. The extent to which the PSM
customization, supports logic will determine the extent to

which software can be generated. The
Executable Representation language that supports the PSM typically falls

(Code) short of the full capabilities of a programming
language; however, conceptually the software

can be considered the final PSM.

Figure 2 - QoS considerations during model transformation

Figure 2 outlines the models that are commonly syntax for expressing QoS in UML. As we move
progressed in a MDA approach. Quality of Service beyond the QoS catalog, our research will focus on the
annotations or parameters must be introduced into each constraints that are placed on transformations as a resultO model and the transformations must consider such of the quality requirements and explore generative
parameters as models are refined. The current OMG techniques for ensuring that metrics can be gathered. In
RFP is a beginning - standardizing a vocabulary and addition, use case scenarios must be formally expressed

EDOC 2002

. so that they can be used as an input to an interface
generator. Thus, an ultimate goal is that given a interface

parameterized domain model, semantically equivalent Bank

interfaces (and the bridges between them) might be iA

generated. Our future work will explore mechanisms for clos•eaccoun

expressing such parameters as annotations for design findaccount

patterns so that this vision can be progressed. find by_oýner
open-account

In the example described below, we will follow the
progression of a business model for a simple bank to a
CORBA Platform Specific Model that uses experienced- interface

based design pattems to address Quality of Service interface It
ACCOun id

requirements. We will look at how these patterns allow o.ner d date
security administration to be simplified and the most number amount

common remote services to be optimized. The final set PIN

of interfaces will be presented as the "UniFrameBank". balance

wi thdraw

6. An Example: Model Driven Architecture deposit ntrface i lnte aretrieve ite, l[Deosit [Withdrawal

with Quality of Service Considerations adjust

Model Driven Architecture starts with the
construction of a business (or domain) model based on interface

the requirements analysis. Requirements are often Adjust•.t

expressed in a natural language and UML is a popular reason

tool for documenting and validating the business model.
S In this example, we will analyze a "simple bank" and

explore how interfaces may be organized based on the
quality of service aspects and known use case scenarios. 6.2 Simple Bank Platform Independent Model

6.1 Simple Bank Business Model The next step is to determine the usage scenarios that
must be supported by our SimpleBank, to fully explore

A typical business description of a simple bank is: the business rules and to determine the quality of service
The SimpleBank manages accounts. A unique account characteristics of the usage scenarios (or services).
number identifies each account. An account has items This is necessary to create a Platform Independent
associated with it. An item is a transaction against the Information Technology (IT) model of the SimpleBank
account (deposit, withdrawal or adjustment). Deposits that enables efficient information technology services to
and withdrawals have a unique identifier, a date and an be offered by the SimpleBank. We need to resolve
amount. Adjustments have these attributes and an questions that arise during the development of the
annotation that provides the reason for the adjustment. business model such as:
There is a bank identifier or bank routing number that is
used as an account prefix when interfacing with other w Can one owner have multiple accounts?
banks. This bank id is not, however, used internally as w If one owner can have multiple accounts, how do
part of the account number. Accounts maintain an we navigate to them?
owner identifier, a single PIN number, and an available w Is there a need to iterate through account items?
balance. The SimpleBank supports the opening and n What are the most common usage scenarios?
closing of accounts and update of account information How do we optimize the services to accommodate
such as owner and PIN. Accounts are typically located the common usage patterns?
using the account number, but can also be located using
the owner identifier. Some business services require that A use case analysis is employed to capture this
the PIN be validated before the transaction can be information. The Platform Independent Model
completed. considers additional details such as exceptions and

Figure 3, based on the above description, indicates security considerations that are not unique to a particular
Fire 3, businesodel fo r the a escrim ptn ba n d s platform. Abstracting away such details is typical of

the UML business model for the simple bank. business models, but those issues must be considered for

-6-

EDOC 2002

* an information technology system. A common initial The first quality of service issue we will address is

approach to defining the Platform Independent Model is one aspect of security: access control. We will use the

to add design details directly to the business model. techniques outlined in Figure 4 to review the model and

This is typically not sufficient as business models are use cases and apply experience-based security access

often not appropriate for expressing information control design patterns.

technology viewpoints. For this reason, a software

architect, drawing on their own experienced-based Are there significant security requirements identified
design patterns and taking all aspects of the model into for the service(s)?
consideration, transforms the business model into a PIM.

This paper discusses the transformation of model and If so, consider segregating administrative features into

outlines some of these experienced-based techniques. It separate interfaces from those that provide the less

is hoped that these experience-based techniques will be restrictive non-administrative functionality
formalized in the future for the purpose of using them
with generative algorithms. Is it expected that administrators will also be allowed

to use all the non-administrative features of a
During use case analysis for the SimpleBank, we service?

capture the following business rules that must be
supported by the information system (this is a subset Use inheritance to clarify this in the model and simplify
provided to aid in illustration of the QoS requirements), the security model. That is, an administrative interface

should inherit from the non-administrative interface.
"* Bank customers may query account balance (via

phone) and/or withdraw funds (using a teller Can you navigate between interfaces as required
machine) from an account without assistance while maintaining security controls at the point of
provided that they have their account number and navigation?
PIN.

"* Merchants may request withdrawals from Review navigation patterns to ensure that given an
accounts by providing their merchant object reference, it will be easy to navigate to other

identification, account number and PIN objects and that security rules logically apply at the
(checkcard services). point of navigation.

"* Tellers may locate accounts based on owner Figure 4: Experience-based Security Techniques
identification, query account balances, process
deposits and withdrawals for customer and review It is much easier for security administrators to assign
existing account items. Tellers may use external policies based on roles to groups of functionality (vs.
means of identifying a customer (not required to individual users and individual functions). If
use/know PIN). functionality can be grouped based on security patterns

"* Bank managers may perform all the functions of a (such as view access vs. administration access) then
Teller and may also open and close accounts and security policy can be defined based on functional
create adjustments. groupings (ultimately interfaces and/or objects). This

"* Bank customers may have many accounts and will also increases the scalability of the security model and is
use the same owner identifier for all these more efficient at run-time.
accounts. It must be easy to locate all the
accounts for a customer. Our analysis review indicates that there are

"* The bank offers a response time guarantee of three significant security related usage restrictions, and that

second to merchants for services or the fees are using the business model as the basis of the PIM without
waived for the request. Merchant requests must refinement for security considerations would force
be prioritized above other system requests. access control checks for each individual operation. For
Response times for merchant requests must be example, our business rules state that the open accountO
monitored. and closeaccountO operations can only be done by a

"* Account balance inquires from remote locations bank manager, but they are in the same interface as the
are a very common business scenario that requires findaccountO operation that locates accounts and must

less than five second response time to ensure be accessible to tellers. In addition, we see that bank
customer satisfaction. Response time on balance managers are allowed to perform all the functions of

inquires must be monitored. tellers, so we can use inheritance to capture this aspect

of the access requirements. Finally, we need to review

-7-

EDOC 2002

. the navigation patterns to ensure that our Platform The next step in the Model Driven Architecture is to
Independent Model supports all our usage scenarios, find a way to use all the model information that has been

captured in the use case analysis of the Platform
During our analysis, we notice that we have two Independent Model (PIM) and define the techniques that

interfaces that are empty - that is, they provide no allow Platform Specific Models to be created that
additional functionality (other than typing). We may leverage all aspects of the PIM. We have reached the
want to simplify this in the IT model. A refined point where model optimizations must consider the
Platform Independent Model (created based on the characteristics of the target environment and/or platform.
above discussion) is shown in Figure 5.

As we make this transition, we see the value of
n..e.rface progressing to a Platform Independent Model that is

.•i.rame•r:A• ,i,,,,er optimized for a particular computing paradigm; that is,
-.account factory Account. act ory the PIM may be used as a foundation for multiple
-~aci trn....co..tplatform specific implementations provided those

•fnaconn umbri tring• Accountspcfcroie

- accou• t _by_oby n _ed:ri.e d tring):AccountNumbe. platforms share some common characteristics. The

locates characteristics or paradigms to consider include
distributed solutions (distributed objects, synchronous
messaging, asynchronous messaging, etc.), and local

interface sltospoeua
Obif-Bank: :Ant• . solutions (object-oriented programming, procedural

double, PIN~in tprogramming, etc.). Other aspects such as embedded
*ose, ..o.n..•er:in strind oit:id and/or real-time might also be considered at this time. A

o.pd.te.o.e,....erid:in stri••,:void transition to a "paradigm specific model" is a useful
..pdate.ý_PN(oldPI,:in ,tring,.nePIN:in ••ting): old intermediate step that captures the analysis necessary for

adjustamoun:in double,reasonin strin9):void a transition from a Platform Independent to Platform
•dinise...r Specific Models. As such it may be useful in the

n ef development of algorithms that can be used with
interfacegenerative techniques for Platform Specific Models.

Uni franeBank, ::Account
.account admin:AccountAdmin

.account finder:AccountFinder

.numberstr ng Are there usage scenarios that require remote access
,o.ner id:string across wide area networks where network speed may
*PlN:strings

*baoance:double be a factor?
,retrieve iitem~itemnid:in string) Item

tdeposit .a.o....in double):void Evaluate carefully each high usage remote access
• ihdr n:in double) :double scenario for the following characteristics.

I1. Does it require multiple network operations to

interfaceooV accomplish what is logically a single request to the

Vh1ofraepank: . et user?

id :string Consider creating a service interface that offers services
odate stem.. Uoe...::•te*1*t that wrap the existing service and gather all required

nanount :doobe Fa~
+...........inl information before responding.

2. Is it common to require and/or update multiple

frbalace"double 17 • •. m attributes simultaneously?

Consider passing structures or objects by value instead
ofusing accessors and mutators on object attributes.Figure 5: Simple Bank

Platform Independent Model (PIM) Figure 6: Experience-based remote access techniques

MdlContinuing with our evaluation of quality of service

6.3 Simple Bank Paradigm Specific Model issues, we focus on a distributed object paradigm as our

-8-

EDOC 2002

. technology choice. Figure 6 includes some of the

techniques that we can use to refine our Platform As we consider the technology platform that will be

Independent Model (these are illustrative and not utilized, an evaluation of the quality of service

exhaustive), requirements for the Simple Bank with regard to the

platform features are part of the final transformation into

These design principles are key features of aspect a Platform Specific Model. These requirements (based

oriented (or service oriented) architectures and are at the on the analysis of the domain and the QoS parameters

heart of what must be done for secure manageable web from our catalog) are:

services. It is important to note that the business model

is typically expressed as an object-oriented view of the Security: the service should be able to support dynamic

business, not as a service oriented model. Therefore it is decisions regarding exporting functionality to a user.

not possible to derive the service model directly from a The user should not be aware or have the ability to

business model with generative tools - that is, there is attempt to invoke any update operations unless they are

additional information (such as patterns of usage) that is authorized for update (that is, it should be possible at

not expressed in the business model that must be runtime to determine the interface offered to individual

considered. The effect of this is that the resulting users).

service model must be manually validated against the
business model, as effects of changes on one model are Capacity: the system should be architected to scale to

not readily identifiable. This is a serious issue for thousands of uses doing concurrent extensive work on

business systems and one that will need to be addressed hundreds of accounts. The usage is such that multiple

as MDA techniques and tools mature. operations will typically be done on accounts.

The analysis of our SimpleBank indicated that Maintainability: The ability to provide administrative

remote requests for account balance are very common services that extend the functionality must be available.

and have a performance commitment associated with The enhancement of these administrative interfaces
O them. In addition, there were merchant services that should not impact the customers who are using the core

have an impact on the revenue if performance features of the bank.
commitments are not met. The PIM currently requires
two independent requests across the network each time a Performance: This is a distributed service. The service

balance is requested - first AccountFinder::find should be optimized for interactions across a wide area

(account ..number) to locate the account followed by network at midrange speed.

Account::balance0 to retrieve the balance. A more

efficient remote operation (on some yet to be determined The UniFrameBank designed to accommodate these

interface) might be gethbalance (accountnumber) to requirements is defined below in ISO IDL. Note once

allow this to be a single remote operation. again, that this interface model cannot be generated from
the business model; a classic object-oriented design that

The key services of the bank are reflected in Figure 7 does not take into consideration any QoS characteristics.

This is a paradigm specific model that is an addendum to The level of abstraction for the business model does not

the PIM. This reflects the requirement that distribution support the level of detail required to factor functionality

be considered and that key services be segmented for the in this way.

purpose of performance enhancement, prioritization, and

metrics. The UniFrameBank module defined in Figure 8 takes
these QoS requirements and the usage scenarios into

inter. ,ce account. It introduces interfaces that respect the QoS
requirements of the SimpleBanks' service offerings

..... id:.,rl... while maintaining the separation of concerns necessary

.wl~hdro wf.cccfounenrbee-in efring P-~ srnrand ln g e oin ec, of an
S ...ebA1.. , bc ,ringPN rng ,.donbl to address security, ease of administration and

maintainability.

. Figure 7: Key Services Model for the SimpleBank

6.4 Simple Bank - Platform Specific Model

-9-

EDOC 2002

0
module UniframeBank // AccountFactoryinterface AccountFactory :AccountFinder

typedef sequence<string> AccountNumbers; ac oen(
AccountInfo open(

struct AccountInfo { sn string owner _id,

string owner id; in double deposit,

string number; in string PIN

string PIN;) raises (

double balance; InvalidParameter1;)

struct ItemInfo { void close(

string id; in string account_number

string type;) raises (

string date; AccountNotFound
double amount;
string reason;

; Account

exception AccountNotFound{}; interface Account

exception ItemNotFound{};
exception InsufficientFunds{ readonly attribute

double balance; AccountAdmin accountadmin;
1; readonly attribute

exception InvalidParameter{ AccountFinder account finder;

string message;-' readonly attribute string number;
readonly attribute string owner id;
readonly attribute string PIN;

// Forward references
interface AccountFactory; ItemInfo retrieve item info(

interface Account; in string itemnid
interface AccountAdmin;) raises (

ItemNotFound./ Key Services);
interface BankService

void deposit
readonly attribute string bank_id; in double amount

readoly Iraises(
void withdraw(InvalidParameter

in string accountnumber,
in string PIN,
in string merchant_id, double withdraw
in double amount in double amount

raises () raises (
AccountNotFound, InsufficientFunds
InsufficientFunds)

double getbalance(// AccountAdmin
in string account-number, interface AccountAdmin : Account
in string PIN void updateowner(

in string owner-id
raises (AccountNotFound) raises (

); InvalidParameter

// AccountFinder void update_PIN(
interface AccountFinder in string oldPIN,

readonly attribute in string newPIN
AccountFactory account_factory;) raises (

readonly attribute string bankid; InvalidParameter
_);

Account find(
in string accountnumber void adjust(

raises (in double amount,
AccountNotFound in string reason

);) raises (
InvalidParameter

AccountNumbers find account-by owner(
in string owner id.

raises (-;
AccountNotFound

Figure 8 - UniFrameBank - Platform Specific Model

-10-

EDOC 2002

0
An AccountFinder interface is responsible for 8. Conclusion

locating accounts. This eases security because none of
the operations on the Account are visible from this The ability to provide the QoS parameterization of
interface; hence if a client is not authorized to access an models is recognized in the Object Management Group
account they will be restricted from obtaining a community and standards in this area will lead to the
reference to an Account object. In addition, the ability to generate Platform Specific Models that take
AccountFactory (which inherits from AccountFinder) is quality of service characteristics into account. However,
available only to clients who are authorized to open or since there has been a very little work on progressing
close accounts. The AccountAdmin interface was Quality of Service specifications for component-based
introduced to allow evolution to more sophisticated architectures, UniFrame research has a potential to
services without affecting the interfaces of the impact how the Object Management Group (OMG)
coreaccount services (AccountFinder and defines QoS parameterization for Model Driven
AccountFactory). The client must be authorized to use Architecture and the ability to more clearly specify and

an AccountAdmin object which had the ability to modify measure component feasibility for a particular task. The

existing account attributes or items. The Account object standardization of QoS catalogs and parameters is a pre-

offers only the core banking operations. The ability to requisite to defining algorithms for the transformation of

request all Account or Item information in a single Platform Independent Models into Platform Specific

operation was added to the Account Interface to meet Models. In addition, benchmarking and service

the performance requirements and limit the number of validation via instrumentation require that such

network interactions. The BankService interface that standards exist. Our expectation is that any Quality of

was introduced in the paradigm specific PIM is retained Service parameters defined by OMG will be applicable

in the PSM. for CORBA®, J2EETM, and Web Services component
architectures.

7. Future Directions Quality of Service characteristics must have syntax
for expression in every artifact of the analysis, designThe models and IDL presented in this paper will and development process. Design patterns must be

form the basis of the additional work to validate the docu ment ploied in s atter ative
expeiene-bsed esin ptters peseted n te pper documented and exploited in such a way that generative

experience-based design patterns presented in the paper techniques can be applied. In addition, formal
parameteriand tio n pr the s g ofo eath n modl specifications will allow the instrumentation necessary
parameterization with the goal of enabling generation of for measuring quality of service to be come an integral

platform specific models such as those presented in this par me dduewar and component implementation
paper.part of m-iddleware and comp~onent implementation

frameworks.

The next step in our research is to examine how these QoS-oriented software development is of paramount
experienced-based patterns can be expressed as model importance to delivering robust, scalable and secure
parameters. We are hopeful that previous research distributed component solutions.
(including our work on the QoS Catalog and TLG) [15]
[16] and work in progress on standards for UML
Profiles for QoS [14] can be leveraged. For this reason,
we have not proposed a language for this purpose as yet.
The QoS instrumentation is a complementary research
activity. There is a need in component-based
environments to progress instrumentation that can be
utilized to determine whether a component can meet
those QoS parameters when used within a composition.
Of course, a part of the challenge is that the
instrumentation introduces an additional overhead and in
situations that are time sensitive or must be predictable,
this overhead may disrupt the ability to measure the QoS
parameter under observation. It is clear that a
ubstantial amount of research needs to be done in this

area and we plan to use an approach based on event
grammars as indicated in [1] [17].

- I]-

EDOC 2002

9. References [13] Chris Jones, Partha Pal, Franklin Webber, 2002. Defense
Enabling Using QuO: Experience in Building Survivable

CORBA Applications. Technical Presentation. Distributed
[OI] Rajeev R. Raje, Barrett Bryant, Mikhail Auguston, Andrew Object Security Conference (DocSec 2002). Baltimore, MD.
Olson, Carol Burt. "A Unified Approach for the Integration of March 2002.
Distributed Heterogeneous Software Components",

Proceedings of the 2001 Monterey Workshop on Engineering [14] Object Management Group. 2002. UMLTM Profile for
Automation for Software Intensive System Integration, pp: Modeling Quality of Service and Fault Tolerance

109-119, Monterey, California, 2001. Characteristics and Mechanisms. Request for Proposal. OMG

document ad/02-01-07. Framington, MA. Note: This RFP[2] Object Management Group. 2001. Model Driven issued January 2002 with submissions due June 24, 2002.

Architecture: A Technical Perspective. Technical Report.

Document # ormsc/2001-07-01. Framingham, MA: Object [15] Girish J. Brahnmath, Rajeev R. Raje, Andrew M. Olson,
Management Group. July 2001. Mikhail Auguston, Barrett R. Bryant, Carol C. Burt. 2002. A

Quality of Service Catalog for Software Components.
[3] Carol C. Burt, Barrett R. Bryant, Rajeev R. Raje, Andrew Proceedings of the 2002 Southeastern Software Engineering
Olson. Mikhail Auguston. 2002. Quality of Service (QoS) Conference (to appear).
Standards for Model Driven Architecture. Proceedings of the
2002 Southeastern Software Engineering Conference (to [161 Barrett Bryant, Mikhail Auguston, Rajeev R. Raje,
appear). Andrew M. Olson, Carol C. Burt. 2002. Formal Specification

of Generative Component Assembly using Two-Level
[4] K. Czarnecki, U. W. Eisenecker, 2000. Generative Grammar. Technical Report. University of Alabama
Programming: Methods, Tools, and Applications. Addison- Birmingham.
Wesley.

[17] Mikhail Auguston. 2000. Tools for Program Dynamic
[5] Object Management Group. 2001. CORBA 3.0 CORBA Analysis, Testing, and Debugging Based on Event Grammars.
Component Model Chapters. Document # ptc/2001-11-03. Proceedings of the 12th International Conference on Software
Framingham, MA: Object Management Group. Engineering and Knowledge Engineering (SEKE 2000),

[6] Sun Microsystems. 2001. Java 2 Platform Enterprise pp.159-166.

Edition Specification vJ.3, Available via ftp from [18] Object Management Group. 2000-2002.0MG Adopted
wwwjava.sun.com. Sun Microsystems. Technology for UMiL, UML Profiles, Meta Object Facility and

Common Meta-Data Warehouse. These OMG documents are
[7] Rajeev R. Raje, Mikhail Auguston, Barrett Bryant, Andrew available from OMG via
Olson, Carol Burt. 2001. A Quality of Service-based http://www.omg.org/technology/documents/modelingspec-ca
Framework for Creating Distributed Heterogeneous Software talog.htm. Framingham, MA: Object Management Group.
Components. Technical Report. Indiana University Purdue
University Indianapolis.

CORBA® is a registered Trademark of the Object
[8] J. A. Zinky, D. E. Bakken, R. Schantz,, 1995. Overview of

Quality of Service for Distributed Objects, Proceedings of the Management Group(OMG). CCM, UML, MOF and MDA

Fifth IEEE Dual Use Conference. are trademarks of OMG.

[9] S. Frolund, J. Koistinen. 1998. Quality of Service
specification in Distributed Object Systems, Proceedings of JAVA, J2EE, and EJB are trademarks of Sun Microsystems.

the 4 th USENIX Conference on Object-Oriented Technologies
and Systems (COOTS '98). Other trademarks, which may be used in this document, are the

[!0] S. Frolund, J. Koistinen. 1999. Quality of Service Aware properties of their respective owner corporations.

Distributed Object Systems. 5 1h USENIX Conference on
Object-Oriented Technologies and Systems (COOTS '99).

[II] Ringo Ling, Hugo Latapie, Vu Tran, 2002. Expressing
Common Criteria Security Requirements in Domain Models in
Model-base Architecture. Technical Presentation. Distributed
Object Security Conference (DocSec 2002). Baltimore, MD.
March 2002.

*K12] BBN Corporation, 2001. Quality Objects (QuO) Project,
R: http://www.dist-systems.bbn.com/tech/QuO.

-12-

A Framework for Automatic Debugging

Mikhail Auguston, Clinton Jeffery, Scott Underwood
Department of Computer Science, New Mexico State University

{mikau, jeffery, sunderwo}@cs.nmsu.edu

Abstract with two types of edges corresponding to the basic
relations.

This paper presents an application framework in The language UFO (from Unicon-FORMAN)
which declarative specifications of debugging actions are integrates the experience accumulated in the FORMAN
translated into execution monitors that can automatically [1] language and the Alamo monitoring architecture [4] to
detect bugs. The approach is non-intrusive with respect to provide a complete solution for development of an
program source code and provides a high level of extensive suite of automatic debugging tools. UFO is an
abstraction for debugging activities, implementation of FORMAN for debugging programs

written in the Unicon and Icon programming languages

1. Motivation
[5](6].

Debugging is one of the most challenging, and least 2. Unicon and Alamo
developed areas of software engineering. Debugging
activities include queries regarding many aspects of target Unicon is an imperative, goal-directed, object-oriented
program behavior: sequences of steps performed, histories superset of Icon. Unicon's syntax is similar to Pascal or
of variable values, function call hierarchies, checking of Java; its semantics features built-in backtracking,
pre- and post-conditions at specific points, and validating heterogeneous data structures and string scanning
other assertions about program execution. Performance facilities. Unicon extends Icon's reach with elegant object-
testing and debugging involves a variety of profiles and orientation, high level networking, messaging, and
time measurements. database facilities.

We are building automatic debugging tools based on The reference implementation of Unicon is a virtual
precise program execution behavior models that enable us machine. Virtual machines (VMs) are attractive to
to employ a systematic approach. Our program behavior language implementers because they provide portability
models are based on events and event traces [1][2][3]. and a vastly simpler implementation of very high level

Debugging automation refers to a computation over an language features such as backtracking. As a result, event
event trace. Program execution monitors are programs detection is an integral part of the VM.
that load and execute a target program, obtain events at VMs are ideal for developing debugging tools; they
run-time, and perform computations over the event trace. provide an appropriate level of abstraction for behavior
Computations are performed during execution, post- models that describe program executions in a processor
mortem, or in any mixture of both times, independent manner, as illustrated by the JPAX tool [7].

Any detectable action performed during a target In Alamo, monitors and the target program execute as
program's run time is an event. For instance, expression (sets of) coroutines with separate stacks and heaps inside
evaluations, statement executions, and procedure calls are a common VM. The Unicon VM is instrumented with
all examples of events. An event has a beginning, an end, over 100 kinds of atomic events, each one capable of
and some duration; it occupies a time interval during reporting a <code,value> pair to monitors with interest in
program execution. This leads to the introduction of two that event. Event reports are coroutine context switches.
basic binary relations on events: partial ordering and Monitors are written independently from the target
inclusion. Those relations are determined by target program, and can be applied to any target program
language syntax and semantics, e.g. two statement without recompiling the monitor or target program.
execution events may be ordered, or an expression Monitors dynamically load target programs, and can
evaluation event may occur inside a statement execution easily query the state of arbitrary variables at each event
event. The set of events produced at the program run time, report. Multiple monitors can monitor a program
together with ordering and inclusion relations, is called an execution, under the direction of a monitor coordinator.

S event trace and represents a model of program behavior. Alamo's goal was to reduce the difficulty of writing
An event trace forms an acyclic directed graph (DAG) execution monitors to be just as easy as writing other

types of application programs. UFO supports FORMAN's

more ambitious goal of reducing the task of writing test test evaluation
automatic debuggers to the task of specifying generic iteration loop iteration
assertions about program behavior, return return from procedure

call

3. An Event Grammar for Unicon Event types form a class hierarchy, shown in Figure 1.

Event grammars provide a model of program run time Subtypes inherit attributes from the parent type.

behavior. Monitors do not have to parse events using this
grammar, since event detection is part of VM and UFO
runtime system functionality. The following description
provides a "lightweight" semantics of the Unicon
programming language tailored for specification of
debugging activities.

An event corresponds to a specific action of interest
performed during program execution. Each event has one
or more types and related attributes associated with it.

Universal attributes are found in every event. They
are frequently used to narrow assertions down to a
particular domain (function, variable, value) of interest.
Some of the universal attributes are:

sourcetext: in canonical form (i.e. with redundant
spaces eliminated, etc.)

linenum, colnum: source text locations
timeatend, time at begin, duration: timing

attributes
value at begin (Unicon-expression),
value at end (Unicon-expression): these attributes

provide access to the program states Figure 1. Event Type Inheritance Hierarchy

The event types, and type-specific attributes they provide, The UFO event grammar for Unicon is a set of axioms
are summarized in the table below, describing the structure of event traces with respect to two

basic relations: inclusion and precedence. The grammar
Event Type Description Attributes shown below is one possible abstraction of Unicon
prog ex whole program semantics; other event grammars might be used. The

execution event grammar limits what kinds of bugs can be detected,
expreval expression evaluation value, operator, so detail is useful. The grammar uses the notation:

type, failure p
func call function call name, paramlist Notation Meaning
param actual parameter name A :: (3 Q B precedes A, A includes B and C

evaluation A* Zero or more A's under precedence
func body function body execution A+ One or more A's under precedence
input, 1/0 file A -B Either A or B; alternative
output A? A is optional
variable variable reference { A , B } Set; A and B have no precedence
literal reference to a constant

value progex:: (expreval *)
lhp lefthand part, address expreval::((expreval) I unary op

assignment (expr eval expreval) I binary op
rhp righthand part, (expr eval+) I

_ _ assignment (test clause) I conditional/

clause then-, else-, or case case expressions

branch execution (iteration *) loops
({ lhp, rhp)) assignment

lhp and rhp are not FROM progex APPLY 1]
ordered, beginning of Quantifiers are introduced as abbreviations for
lhp precedes rhp; and reductions of Boolean operations OR and AND. For
end of lhp follows rhp instance,

iteration:: (test expr-eval*) I (expreval* test) FOREACH Pattern FROM eventset Booleanexpr
(expreval *) is an abbreviation for

funccall:: (param* func_body) AND/[Pattern FROM event-set APPLY Booleanexpr]
func_body:: (expr eval* return?)

Debugging rules in FORMAN usually have the form:
Execution of a Unicon program produces an event Quantifiedexpr SAY-clauses ONFAIL SAY-clauses

trace organized by precedence and inclusion into a DAG. The Quantified-expr is optional and defaults to TRUE.
The structure of the event trace (event types, precedence The execution of FORMAN programs relies on the
and inclusion of events) is constrained by the event Unicon monitors embedded in a virtual machine
grammar axioms above. The event trace models Unicon environment.
program behavior and provides a basis to define
debugging activities (assertion checking, debugging 5. Examples of Debugging Rules
queries, profiles, debugging rules, behavior visualization)
as appropriate computations over the event traces. UFO supports and improves upon the most common

application-specific debugging techniques. For example,

4. FORMAN UFO supports traditional precondition checking, or print
statement insertion, without any modification of the target

Alamo allows efficient monitors to be constructed in program source code. This is useful when the
Unicon, but using a special-purpose language such as precondition check or print statement is needed in many
FORMAN, with the rich behavior model described in the locations scattered throughout the code.. preceding section, has compelling advantages. For
example, in FORMAN we may refer to target program Example #1: Tracing. Probably the most common
variable x, while in the Unicon monitor it is referenced as debugging method is to insert output statements to
variable("x", &eventsource). generate trace files. It is possible to request evaluation of

More important than such notational conveniences are arbitrary Unicon expressions at the beginning or at the
FORMAN's control structures that support computations end of events.
over event traces, centered around the notions of event DO AT EVERY A: func call &
pattern and aggregate operations over events. A.funcname == "myfunc"

The simplest event pattern comprises just an event type FROM progex {
and matches successfully an event of this type or an event BEFORE A

of a subtype of this type. Event patterns may include { write("entering myfunc, value of X is:", X)}

event attributes and other event patterns to specify the AFTER A

context of an event under consideration. For example, the } write(ieaving my func, value of X is:", X)

event pattern This debugging rule causes run time instrumentation
E: expreval:: (R: rhp & is-an-object(R.value)) with calls to writeo at selected points, before and after

& E.operator ==.... each occurrence of event A.
matches an event of assignment type where the right hand
part evaluates to an object. Temporary variables E and R Example #2: Profiling. A myriad of tools are based on a
provide an access to the events under consideration within premise of accumulating the number of times a behaviorthe pattern. rms facmltn henme ftmsabhvo

The following example demonstrates the use of an occurs, or the amount of time spent in a particular activity
aggregate operation. or section of code. The following debugging rule

CARD[A: funccall& comprises several computations over the event trace.

A.func._name == "read" FROM progex ISAY(Total number of reado statements:
yields a number of events satisfying given event pattern, CARD[rYinput & r.filename == "xx.in'
collected from the whole execution history. Expression FROM prog ex]
[...] is a list constructor and CARD is an abbreviation for "Elapsed time for read operations is:"
a reduction of '+' operation over the more general list +/[r:input & r.filename=="xx.in"
constructor: FROM progex APPLY r.duration]

+/[A: func_call & A.funcname == "read"

0
Another interesting prospect is the development of a precedence and containment relations, available for

suite of generic automated debugging tools that can be processing. This generality is extremely powerful;
used on any Unicon program. UFO provides a level of however the vast majority of assertions can be compiled

abstraction sufficient for specifying typical bugs and down into monitors that execute entirely at runtime.

debugging rules. So far, the automatic debugging Runtime monitoring saves enormously on memory and

encyclopedia at http://www.cs.nmsu.edu/pleaselbups.html I/O requirements and is the key to practical

has entries for 53 common bugs. implementation. For those assertions that require post-
mortem analysis, the UFO runtime system will compute a

Example #3: Detecting Use of Un-initialized Variables. projection of the execution DAG necessary to perform the

Reading an un-initialized variable is allowed in Unicon, analysis.
but often leads to errors. Therefore, in this debugging rule The first step in generating code under the UFO
all variables within the target program are checked to translation model is to categorize each assertion as either
ensure that they are initialized before they are used. "runtime", "post-mortem", or "hybrid", denoting the

extent to which that assertion can be performed at
FOREACH E: expr_eval CONTAINS (V: variable) runtime. Runtime and hybrid categorization is determined
FROM progex by constraints on FORMAN quantifier prefixes and

EXISTS D: lhp FROM E.prevpath results in more efficient monitor code. Nested quantifiers
D.source text == V.source text AND generally require post-mortem operation.

V.sourcetext BELONGS_TO generallyreqirepos-mrtemopraton
(E.scope SCOPEINTERSECTION D.scope) The UFO compiler generates Alamo Unicon monitors

ONFAIL SAY("Expression" E "contains the" from FORMAN rules. Each FORMAN statement is

"uninitialized variable" V.source.text) translated into a combination of initialization, run-time,
and post-mortem code. Monitors are executed as

SCOPE INTERSECTION is similar to a set intersection, coroutines with the Unicon target program.. except that it takes into account scoping and visibility
rules of the source language. Implementation of Example #1: Tracing. A single

DO AT EVERY quantifier is quite typical of many UFO

Example #4: Closed Files. Failure to close files that have debugging actions and allows computation to be
been opened is an easily overlooked error. This assertion performed entirely at runtime. The events being counted
detects this event and warns the user. The temporary and values being accumulated are used to construct an
variable NumberOfClose holds the cardinality of the event mask in the initialization code that defines the
closeo event set. Alamo events that will be monitored.

The monitor's event processing loop implements the
FOREACH a: funccall::(b:param) & filter based on procedure name within an if-expression.

a.func__name == "open" The Unicon code blocks containing write() expressions
LET NumberOfClose = are inserted directly into the event loop for the relevant

CARD[c:func.calh::(d:param) & events. The complete monitor is:
c.func name == "close" &
b.source_text == d.source text] $include "evdefs.icn"

IN IF NumberOfClose == 0 THEN link evinit
SAY("Failed to close file" b.sourcetext procedure main(av)

"after opening at event" ,a) Evdnit(av) I stop("can't monitor ", av[1])
ELSEIF NumberOfClose > 1 THEN

SAY("Atempt to close file " b.sourcetext### initialization for BEFORE and AFTER func call
"more than once") ENDIF mask:= E_Pcall ++ EPret ++ E_Pfail

6. Implementation Issues while EvGet(mask) do {
if &eventcode == E Pcall &

image(&eventvalue)=="procedure myfunc" then

This section describes issues that have arisen during ### inserted BEFORE clause

the implementation of UFO. The most important of these write("entering myfunc, value of X is:",

issues is the translation model by which FORMAN variable("X", Monitored))
assertions are compileddon to b wic h FoRmon if &eventcode == (EPret E_Pfail) &

serions arcompile own o nicon amo monitors. image(&eventvalue)=="procedure myfunc" then
ebugging activities are written as if they have the :### inserted AFTER clause
complete post-mortem event trace, the DAG with events, write("leaving my.func, value of X is:",

0
variable("X", Monitored)) event loop. Since the compiler processes several

} assertions together, it can merge overlapping constructs
end (for example, those referring to the same events).

For certain kinds of FORMAN constructs, such asImplementation of Example #2: Profiler. This is nested quantifiers, the monitor must accumulate a sizable

another typical situation, which involves an aggregate projection of the complete event trace and postpone

operation and selection of events according to a given corresponding computations until all required information

pattern. The SA Y expression is im plem ented by a call to isravailable, and pschedule uco ilespondingr co m putations.
write(); it must be performed post-mortem since it uses i vialadshdl orsodn opttos

writO; t mst e pefored ostmortm snceit ses The most challenging and interesting remaining part of
parameters whose values are constructed during the entire Thi s cmp lat in efr is t ere oti m iz is anayss

programthis compilation effort is to further optimize this analysis.

denotes an accumulator +/; both require a variable that is UFO's goal of practical application to real-sized
iniialze tozeo. heevet ubtpe an cnstaits re programs has motivated improvements to the Alamo

initialized to zero. The event subtpiies and constraints are instrumentation of the Unicon VM. Although UFO is not
used to generate additional conditional code in the body complete enough to report conclusive results, the

of the event processing loop. Lastly, some attributes such following table illustrates the effects of certain

as r.duration require additional events and measurements op in s t he programein tquestion ts a m essage
besies he iitil trggeingeven. I thecas of optimizations. The program in question is a mail message

besides the initial triggering event. In the case of indexing tool, which processes mail headers and builds
r.duration, a time measurement between the function call indices. For test purposes it is executed on a sample input

of 3MB. All results are in seconds' The leftmost column

$include "evdefs.icn" shows the application's normal runtime. Columns 2-5

link evinit show runtimes for Implementation Example #2 above (the
procedure main(av) 1/0 function profiler) under Alamo, and three levels of

Evlnit(av) I stop("can't monitor", av[1]) optimization under UFO. Alamo imposed a 200%. ### initialization for CARD and SUM slowdown for comprehensive VM instrumentation, plus
cardreads := 0 less than 100% slowdown for monitor code. Very little of
sumreadtime := 0 the VM instrumentation is actually needed for this
mask:= EFcall example. UFO-1O shows the effect of instrumentation
while EvGet(mask) do { optimization which UFO does at compile-time, optionally

count CARD of r:input... generating a custom VM for a given suite of FORMAN
if &eventcode == E_ drFc * sall & assertions. UFO-CO shows additional compiler

cardreads +:= 1 optimizations on the monitor code. UFO-VM shows the

add SUM of r.duration for r:input effect of a runtime optimization called value masking on
if &eventcode == E_Fcall & the virtual machine instrumentation. We are working on

&eventvalue === (readlreads) then { additional optimizations, and believe the end result will
thiscall := &time be highly practical execution from our high-level
EvGet(EFfail++E Fret) framework.
sumreadtime +:= &time - thiscall

}} No monitor Alamo UFO-IO I UFO-CO I UFO-VM
Translation of SAY 1.35 3.64 2.82 2.30 1.87
write("Total number of reado statements: "

cardreads, "\n",
"Elapsed time for read operations is:", 7. Related Work
sumreadtime)

end See www.cs.nmsu.edu/TechReports/2002/004.pdf for an

The advantage of the UFO approach is the expansion of this survey of related work.

combination of an optimizing compiler for monitoring The Event Based Behavioral Abstraction
code with efficient run-time event detection and reporting. (EBBA) [8] characterizes program behavior in terms of
Since we know at compile time all necessary event types primitive and composite events. Dalek is an event-based
and attributes required for a given FORMAN program, debugger for C built on top of GDB [9].
the generated Unicon monitor can be very selective about FORMAN takes a more comprehensive modeling

* he behavior that it observes. The compiler merges several approach than EBBA or Dalek, based on an event
computations such as operation reduction or quantifiers grammar and a language for expressing computations
present in the FORMAN assertions into a single Unicon

0
over execution histories. Event grammars make
FORMAN suitable for automatic source code This work has been supported in part by U.S. Office of

instrumentation. FORMAN's abstraction of event as a Naval Research Grant # N00014-01-1-0746, by U.S. Army

time interval provides an appropriate level of granularity Research Office Grant # 40473--MA-SP, and by the National

for reasoning about behavior, in contrast with the event Library of Medicine.

notion in previous approaches where events are
considered point-wise time moments.

Monitoring frameworks such as Dalek and COCA [10] References
use GDB to attain a necessary level of abstraction, which

UFO finds in the Unicon virtual machine. While both [I1 Mikhail Auguston, Program Behavior Model Based on

approaches yield adequate source-level access and control Event Grammar and its Application for Debugging

over the monitored program, the virtual machine approach Automation, in Proceedings of AADEBUG'95, Saint-

avoids substantial operating system overhead and offers Malo, France, May 22-24, 1995, pp. 277-291.

better performance and scalability to larger programs. [2] M. Auguston, A. Gates, M. Lujan, "Defining a program
Behavior Model for Dynamic Analyzers", in Proceedings
of SEKE'97, Madrid, Spain, June 1997, pp. 257-262.

Assertion languages provide yet another [3] M. Auguston, "Lightweight semantics models for program
approach to debugging automation. Most approaches are testing and debugging automation", in Proceedings of the
based on Boolean expressions attached to points in the 7th Monterey Workshop on "Modeling Software System
target program, like the assert() macro in C. [13,14,15] Structures in a Fast Moving Scenario", Santa Margherita

give approaches to programming with assertions for C Ligure, Italy, June 13-16, 2000, pp. 23 -3 1.

and Ada. Even local assertions associated with particular [4] Clinton L. Jeffery, Program Monitoring and Visualization:

points within the program may be extremely useful for an Exploratory Approach. Springer, New York, 1999.
program debugging. The DUEL [11] debugging language [5] Clinton Jeffery, Shamim Mohamed, Ray Pereda, and

Robert Parlett, "Programming with Unicon",
introduces expressions for C aggregate data exploration, http://unicon.sourceforge.net.W for both assertions and queries. [6] Ralph E. Griswold and Madge T. Griswold, The Icon

The notion of computation over execution trace Programming Language, 3Pd edition. Peer to Peer
introduced in FORMAN is a generalization of Communications, San Jose, 1997.
Algorithmic Debugging [21, 22] and may be a convenient [7] K. Havelund, S. Johnson, and G. Rosu. "Specification and

basis for describing generic debugging strategies. Error Pattern Based Program Monitoring", European

PMMS [12] receives queries about target programs Space Agency Workshop on On-Board Autonomy,

written in AP5, instruments source code, and stores data Noordwijk, Holland, October 2001.

in a database to answer the posed questions. PMMS's [8] P. C. Bates, J. C. Wileden, "High-Level Debugging of
Distributed Systems: The Behavioral Abstraction

domain specific query language is similar to FORMAN Approach", The Journal of Systems and Software 3, 1983,
but tailored for database-style query processing. pp. 255-264.

[9] R. Olsson, R. Crawford, W. Wilson, "A Dataflow

8. Conclusions Approach to Event-based Debugging", Software --
Practice and Experience, Vol.21(2), February 1991, pp.

The popularity of virtual machines promises to enable 19-31.

dramatic improvements in automatic debugging. These [10] M. Ducasse, "COCA: An automated debugger for C", in

improvements will only occur if debugging is a specific Proceedings of ICSE 99, Los Angeles, 1999, pp.5 04 -5 13.
goal of the virtual machine, e.g. as in the case of .net [13]. [11] M. Golan, D. Hanson, "DUEL - A Very High-Level

Debugging Language", in Proceedings of the Winter
UFO illustrates what is possible for a broad class of USENIX Technical Conference, San Diego, Jan. 1993.

languages such as those supported by the Java VM or the [12] Y. Liao, D. Cohen, "A Specificational Approach to High
.net VM. Our approach uniformly represents many types Level Program Monitoring and Measuring", IEEE
of debugging-related activities as computations over Transactions On Software Engineering, Vol. 18, No. 11,
traces. We have shown an approach to integrating event November 1992, 969- 978.
trace computations into a monitoring architecture based [13] http://www.microsofi.com/net/.
on a virtual machine. The end result provides a suitable
environment for the implementation of automated
debugging tools.

* Acknowledgements

Unified Approach for System-Level Generative Programming

Zhisheng Huang, Rajeev R. Raje, Mikhail Auguston
Andrew M. Olson Department of Computer Science

Computer and Information Science New Mexico State University
Indiana University Purdue University Indianapolis Las Cruces, NM 88003, USA

Indianapolis, IN 46202, USA mikau@cs.nmsu.edu, +1 505 646 5286
{ zhuang, rraje, aolson, csun} @cs.iupui.edu,

+1 317 274 5246/5174/9733

Barrett R. Bryant, Carol Burt Changlin Sun
Computer and Information Sciences Computer and Information Science

The University of Alabama at Birmingham Indiana University Purdue University Indianapolis
Birmingham, Alabama 35294-1170, USA Indianapolis, IN 46202, USA

{bryant, cburt} @cis.uab.edu, +1 205 934 2213 csun@cs.iupui.edu, +1 317 274 5246

Abstract designed and built as single systems. This approach has
the problems of large investment, long development

Today's and future distributed software systems will cycles, difficulties in the system integration, and a lack of
certainly require combining heterogeneous software predictable quality. Generative programming [7] and
components that are geographically dispersed so that its product line practice (PLP) [19] help us to move the focus
realization not only meets the functional requirements, from the development of single systems to system
but also satisfies the non-functional criteria such as the families. The use of components to develop software for a
desired quality of services (QoS). The Unified Approach DCS is consistent with the notions of generative
(UA) incorporates the concepts of product line practice programming and PLP. However, another challenge arises
(PLP) and generative programming with the Unified as component-based software development is applied to
Meta-component Model (UMM) to achieve automatic distributed computing. This challenge is an effect of the
development, maximal reuse and seamless interoperation. presence of multiple component models. Currently,
The creation of a software solution for a distributed different component models have been proposed, such as
computing system (DCS), using the UA has two levels, the JavaTM Remote Method Invocation (RMI) [13], Common
component level and the system level. in this paper, the Object Request Broker Architecture (CORBATM) [11, 13,
system-level generative programming of the UA is 17], and the Distributed Component Object Model
described. (DCOMTM) [10]. There are difficulties in bridging the

Keywords: Distributed Computing Systems, components of different models, thus reducing the
Heterogeneous Components, Quality of Services, component reuse. The Unified Meta-Component Model
Generative Programming, Generative Domain Model, Framework (UniFrame) research [14, 15, 16] is an
Two-Level Grammar. attempt to unify the existing and emerging distributed

component models under a common meta-model, the
Unified Meta-component Model (UMM), for the purpose

1. Introduction of enabling the discovery, interoperability and
collaboration of components via a Unified Approach

As distributed computing becomes more and more (UA). The UA is a UMM-based technique, which
crucial for the success of today's enterprises, there is an incorporates some ideas from generative programming

increasing need to develop software for a distributed and PLP. It replaces the manual search for, and adaptation
computing system (DCS) in an effective and efficient and assembly of, heterogeneous and distributed
way. A lot of distributed computing systems are still components with automation. The aim is to develop a

quality-oriented and time-to-market DCS with lower

development and maintenance costs. The creation of a 2.3 UniFrame
software realization of a DCS using the UA has two
levels: a) the component level - component development The UniFrame provides a framework for constructing
and deployment, and b) the system level - automatic or a DCS by integrating the heterogeneous and distributed
semiautomatic system generation. software components. It consists of the Unified Meta-

This paper describes the UA at the system level. The component Model (UMM) and the Unified Approach
principles of generative programming, PLP and the (UA).
UniFame are briefly described in the next section. Section
3 discusses, in detail, the system-level generative 2.3.1 UMM. The recent shift in the focus of Object
programming of the UA, which is illustrated by an Management Group (OMG) to Model Driven
example in section 4. The paper concludes in section 5. Architecture (MDA) [12] is a recognition that bridging

components to create DCS requires standardization of not
2. Related work only the infrastructure but also Business and Component

Models. The UMM provides an opportunity to bridge

2.1 Generative programming gaps that currently exist in the standards arena. The core
parts of the UMM are: components, service and service

The generative programming is concerned with guarantees, and infrastructure. In UMM, components are
bringing automation to the software development. In [7] autonomous entities. All components have well-defined

the generative programming paradigm is defined as: interfaces and private implementation. In addition, each

"Generative Programming is about manufacturing component in UMM has three aspects: a) computational
software products out of components in an automated aspect, b) cooperative aspect, and c) auxiliary aspect.
way. It requires two steps: a) a design and implementation Each component must be able to specify and guarantee

of a generative domain model, representing a family of the quality of service (QoS) offered. The headhunter [18]

* software systems (development for reuse). This model and Internet Component Broker (ICB) [15, 18] of the
includes also a domain-specific software generator; b) infrastructure are responsible for allowing a seamless
given a particular requirements specification, a highly integration of different component models and sustaining
customized and optimized end-product can be cooperation among heterogeneous components (adhering
automatically manufactured from implementation to different models). The headhunter is responsible for
components by means of generation rules (development searching and managing heterogeneous and
with reuse)". The methods presented in [7] can be applied geographically distributed components. The ICB acts as a
both "in the small", i.e., at the level of classes and translator between two heterogeneous components. An
procedures and "in the large", to develop families of large ICB itself is a component defined under the UMM. It
systems. achieves interoperability using the principles of wrap and

glue technology [9]. An example of ICB is a Java -

2.2 PLP CORBA bridge, which bridges a component of Java RMI
technology and a component of CORBA technology. For

In 1997, the PLP initiative [19] was launched by the a detailed description of UMM, see [14, 15, 16].

Software Engineering Institute (SEI) of Carnegie Mellon
University. The intention was to help facilitate and 2.3.2 UA. The UA is the UMM-based technique for the
accelerate the transition from the traditional single system automatic production of a DCS. The creation of a
development to sound software engineering practices software realization of a DCS using UA has two levels: a)
using a product line approach. A software product line is the component level - components are designed and
defined to be a set of software-intensive systems sharing a developed with UMM specifications (which are informal
common, managed set of features that satisfy specific in nature [14]), tested and validated against the
needs of a selected market or mission, and that are appropriate QoS, then deployed on the network, and b)
developed from a common set of core assets in a the system level - a semi-automatic or automatic
prescribed way [5, 6). The SEI's PLP Framework is the generation of a specific DCS product from a DCS family.
first formal attempt to codify the comprehensive The concepts of generative programming are applied at
information about successful product lines. The idea both levels in the UA. This paper describes the
behind this framework is to identify the different issues application of generative programming at the system

* and practices relevant to establishing and running level.

successful product lines in an organization. More
information can be found on the PLP Framework website 3. System-level generative programming of
[201. the Unified Approach (UA)

2

3.1 Core activities in the UA [3]. The GDM is the core software asset that results from
generative domain engineering.

The UA has four core activities for building During component engineering phase, the abstract

distributed systems. These are: generative domain components are mapped to different component models to

engineering, component engineering, generative create concrete components. The concrete components are

application engineering, and active distributed component tested and validated against the appropriate QoS,

management. Their relationships are depicted in Figure 1. deployed over the network, and then are discovered by the

The development process is iterative and there are headhunters. It is worthwhile to note that the generative

feedbacks during the first three activities. These four core programming is also carried out in the component

activities span both the levels of UA: the component level engineering phase of the UA.

and the system level. The first two activities, generative Generative application engineering is the process of

domain engineering and component engineering, building a DCS based on a GDM. It is supported by the

corresponding to the domain engineering in [7], aim at query processor (see explanation in section 3.4) and

maximizing the reuse of both the components and the active distributed component management. During

software architecture. We distinguish between these two generative application engineering, a DCS is produced

activities because they reflect the different levels in the out of a DCS family in three steps: a) determining the

UA. Generative domain engineering is a system-level target system and its architecture instance according to

activity and the component engineering is at the the system specification produced by the query processor;

component level. Generative application engineering is b) searching for concrete components for the target

another system-level activity. Active distributed system via the headhunter; and c) assembling and testing

component engineering is involved at both levels, the DCS according to the architecture instance to produce
a workable distributed system that meets both the
functional and non-functional requirements. The GDM is

Generative component used to guide the system assembly and validation. TheDomain 4- Engineening gie sse n aiain h0Engineering validation of the QoS requirements is carried out both by
QoS composition rules [21], which specify how the

4 system QoS or subsystem QoS can be composed from the

QoS of its parts, and by the event grammars [1, 2], which
are used as the basis for the system behavior models to
trace events like executing a statement or calling a

Generative Aprocedure. The example in the next section illustrates
Engineering ~Component these steps.

Magement Active distributed component management is the
UniFrame resource discovery service (URDS) [18]. It

Iteration and feedback offers the dynamic discovery and management of the

"4--" * Query and search heterogeneous software components and assists in the
finding of the required components during the phase of

Figure 1. UA core activities the generative application engineering. These are
achieved by headhunters, which are analogous to binders

Generative domain engineering consists of activities or traders in other models, with one difference - a trader is

for identifying commonalities and variations of the passive, while a headhunter is active. For details, see [18].

system architecture of a DCS family. It is responsible for
creating the generative domain model (GDM), which is 3.2 UA GDM
discussed in 3.2, to represent a configurable system
architecture. This architecture includes a set of abstract The key to automating the manufacturing of systems
components as the guidelines for developing reusable is a GDM, which consists of a problem space, a solution
concrete components during component engineering space, and the configuration knowledge mapping between
phase. Each abstract component represents one them [7]. The problem space consists of the application-
component type and is defined with its UMM oriented concepts and features that application developers
specification. This specification is natural language-like can use to express their needs. UA GDM contains a

* and includes both the functional and nonfunctional (such Design Space Model (DSM) to represent the common and

as expected QoS properties) aspects of a component [14]. variable properties of a software architecture and a set of

This . specification is then refined into a formal abstract components as guidelines for creating reusable

specification, based upon the theory of Two-Level distributed components. The DSM is an important part of

Grammar (TLG) [4] and natural language specifications the problem space. DSM describes the configurable

3

software architecture with feature notations as described architecture instance. The details of feature notations are
in [7], but, additionally, classifies the architectural nodes indicated in [7]. The root of the example DSM is
that are divided into five types: domain, system, <Bank>, which indicates the specific type of account
subsystem. design and abstract component. In the management system being considered. It has two different
graphical representation of the GDM, these node types are designs: a {Simple Design) and an {Advanced Design).
represented by surrounding the name of each node with The details of the {Advanced Design) are omitted in the
<< >>, < >, (), {), and [J respectively. Associated with figure for simplicity. The {Simple Design) of the
each node type is a standardized description, such as the <Bank> has two subsystems: the (Client Subsystem)
UMM description for an abstract component. With the and the (Account Subsystem). These subsystems also
introduction of node types, a configurable system can have more than one design that have different kinds
architecture can be easily represented. The description of abstract components as shown in the Figure 2. Thus,
associated with a node shows information such as the this architecture can be configured, based on a customer's
relationship between its constituents (its children in the requirements, to create an appropriate architecture
DSM). A simple example of a DSM is described in the instance. One example of the customized architecture
next paragraph. The solution space consists of concrete instance of this DSM is shown in Figure 3. Both the DSM
components developed during component engineering and the architecture instance serve as the example in
when abstract components are mapped to specific Section 4.
component models and implemented. The configuration
knowledge includes, as stated in [7], illegal feature
combinations, default settings, default dependencies, <Banl

construction rules and optimization rules, etc. In UA, it
also includes additional important knowledge, such as,
QoS composition and decomposition rules [21], which tSik, Desig•) l

help ensure the assembled distributed system meets not
only the functional requirements but also the non- " P

W functional requirements. (Cient S•Sytem) (Accoatt Subsystem)

tBnk Design) I ipeDsign)

tsimisle Designj fAdv& e Design) t utsslAClittt] etr]

(Client Subsystem) (Aeunt Subsystem) Figure 3. Architecture instance for an

account management system

ISn Design) 0; P) 3.3 Language for ordering a DCS

S - - W ellAnother important aspect of system level generative
)Ennlc•,esst] t ,AemsnntSere tun 0AeoumMne o programming is how to express the query to order a

concrete system out of a system family. [7] discusses the
use of a domain specific language (DSL), which is a

Figure 2. UA DSM for an account specialized and problem-oriented language, for placing an
management system order. DSL could be a separate textual language, such as

SQL, or it could be in a graphical notation. In general,
Figure 2 shows a simplified example of a DSM for an there is a need for several different DSLs to specify a

account management system. In this DSM, two kinds of complete application. This makes the "order" complex. In
feature notations are used: mandatory and alternative. A UA, the ordering of a concrete system can be expressed in
node is mandatory if a simple edge ends with a filled a structured form of natural language and then processed
circle touching it. This means this node is included in an into TLG with the help of the query processor. TLG
architecture instance if and only if its parent is included, allows queries over the GDM to be expressed in a natural

* A set of nodes that is pointed to by edges connected by an language-like manner, which is consistent with the way in
arc forms alternatives. This means that if the parent of this which UMM is expressed. An example of a query for
set of nodes is included in an architecture instance, then ordering a DCS is presented in Section 4.
exactly one node from this set is included in the

4

3.4 UA generator is to assemble an account management system from the
available concrete components of these abstract

UA generator is a tool for realizing system-level components using the corresponding generative domain

generative programming. This generator is for system model.

generation instead of component code generation. The
architecture of he UA generator is shown in Figure 4. It 4.1 Determining the target system and its

consists of three functional modules: a generative domain architecture instance
model knowledgebase (GDMKB) producer; a query
processor (natural language parser), which is responsible The general form of a query is to request the creation
for translating natural language like orders into system of a system that has certain QoS parameters. The name of
specifications using TLG 181; and an application producer the system is important in identifying the application
which is responsible for assembling a DCS from a DCS domain. A sample query for the above example can be
family based on the UA GDM. The application producer informally stated as: Create a bank system for account
implements the processing logic of the GDM. In our management that has: end-to-end delay < 15 milliseconds
design, we separate UA GDM from the processing logic and throughput > 2500 operations/second. This query is
of GDM. The merit of this approach is that as a GDM parsed into a formal specification by the query processor.
evolves, the only thing that needs to be updated and The generator checks the specifications against the GDM
maintained is the GDMKB. A simple generator for and may prompt for more information from the user, such
prototyping purposes has been designed and implemented as design option in this case (this is an iterative process to
with the logic of a multi-tiered architecture: client tier collect enough user requirements to determine the target
(web browser, HTML pages), web tier (web server, system and its architecture instance).
JSP/Servlet), business tier (application server, generator Assume a simple design is specified for both the
logic) and database tier (UA GDMKB). Experiments are <Bank> and the (account subsystem) (certainly the UA

O underway with this prototype. The initial results indicate a generator provides the specifications from the GDM
good promise in a semi-automatic construction of simple about the simple design and the advanced design so the
distributed systems. application programmer can decide which one to choose).

Then the generator can determine the architecture
instance for the specified system and, thus, the required

GDMKB!
L. component types are also determined as seen in Figure 3.

In this case, two types of component are needed to
4- produce the desired system: [BankClient] and

P e Producer HeadHunter [AccountServer].

4.2 Searching for the concrete components

Builder Query During this step, from the query and the available
Interface Process j •ntrograrnrnelr information in the DSM about the set of the requiredS Interface Application

(tOutput) abstract components, searching criteria (for both

GDMKB Application functional and nonfunctional features) for each
Builder Programmer component type is created. In this example, the QoS of

the two abstract components are set according to the QoS
decomposition rules in this DSM: 1) component

Figure 4. VA generator architecture throughput > system throughput; 2) component end-to-
4. An example end delay < system end-to-end delay.

These decomposition rules provide the broadest range

for the component QoS based on the system QoS. Thus
In order to illustrate the process of the UA system- the QoS criteria for both components are: a) throughput >

level generative programming, along with the functions of 2500 operations/seconds; b) end-to-end delay < 15
each of its constituents, a simple example of a bank milliseconds. Then the headhunters are contacted to
account management system from the finance domain is search for the concrete components. If the foundS described below. The DSM for this example is shown in components are implemented with different technologies,
Figure 2. This DSM constitutes four types of abstract the headhunters will also return the appropriate ICB. In
components, [BankClient], [AccountServer], this example, assume the headhunters discover the
[AccountManager] and [AccountDatabase]. The goal following concrete components for each of the required

5

component types and the necessary ICB, Java-CORBA Based on the query and the analysis above according

bridge (also a component type as described in section to the QoS composition rules, it is obvious the second

2.3.1). Suppose these concrete components are system (Java RMI - CORBA) is the best. The first one

implemented with different technologies: Java RMI or (Java RMI - Java RMI) also meets the QOS requirement

CORBA, and have different advertised QoS. of the query. At this moment, the systems are chosen
according to the advertised QoS of each component by

1. [BankClient] QoS composition rules. The systems are further verified

(a)BankClient - id: phoenix.cs.iupui.edu, technology: by the event grammars [2]. During system assembly, the

Java RMI, end-to-end delay < 10 milliseconds, code for carrying out event trace computations according

throughput > 3000 operations/second to user-supplied test cases is also assembled. These test

(b)BankClient - id: lalo.cs.iupui.edu, technology: cases will be executed to verify that the assembled
CORBA, end-to-end delay < 15 milliseconds, account management system does satisfy the system QoS
throughput > 2500 operations/second specified in the query. If it does not, it is discarded. This

2. [AccountServer] verification process is carried out for each of the
(a)AccountServer - id: swordmaster.cs.iupui.edu, generated account management systems (the first two in

technology: Java RMI, end-to-end delay < 5 the above example). The one with the actual best system
milliseconds, throughput> 12000 operations/second QoS is chosen. If none of the systems meet the QoS

(b)AccountServer - id: magellan.cs.iupui.edu, criteria (as observed by an experimental evaluation), then
technology: CORBA, end-to-end delay < I the user may choose to modify the query and repeat the
millisecond, throughput > 8000 operations/second entire search, assembly and verification process.

3. [Java-CORBA bridge]
Java-CORBA bridge - id: ericsson.cs.iupui.edu, 5. Conclusion
technology: Java RMI, end-to-end delay < I
millisecond, throughput> 10000 operations/second The software solutions for the future DCS will

m assembling and testing require automatic or semi-automatic integration of
4.3 System asoftware components, while abiding by the QoS

constraints advertised by each component and the
Now the generator can assemble four systems requirements on the system of components. This paper

(BankClient - AccountServer) from components found describes the system-level generative programming of the
above. These four systems .are distinguished by the UA in the UniFrame that allows an effective and efficient
implementation technology of its constituent components: assembly of heterogeneous and distributed software
Java RMI - Java RMI system, Java RMI - CORBA components to create a DCS out of a DCS family. The
system, CORBA - Java RMI system and CORBA - result of using the UniFrame and the associated tools
CORBA system. The system QoS is composed from the (such as the UA generator) leads to the automation of
QoS of the concrete components. The system QoS is used DCS production while meeting both the functional and
to select the final product. Assume the following non-functional requirements of the DCS. Although a
composition rules for this example: 1) system throughput simple example is provided in this paper, the principles of
= min (component throughput); 2) system end-to-end the proposed approach are general enough to be applied to
delay = 2component end-to-end delay. larger DCS.

The system QoS of the four possible systems are
listed below. listd beow.6. Acknowledgement
1. Java RMI - Java RMI system QoS

system end-to-end delay < 15 milliseconds
system throughput > 3000 operations/second This material is based upon work supported by the US

2. Java RMI - CORBA system QoS Office of Naval Research under award number N00014-
(including the Java-CORBA bridge) 01-1-0746.
system end-to-end delay < 12 milliseconds
system throughput > 3000 operations/second References

3. CORBA - Java RMI system QoS
(including the Java-CORBA bridge) [I] Auguston, M. Program Behavior Model Based on Event

O system end-to-end delay < 21 milliseconds Grammar and its Application for Debugging Automation.
system throughput > 2500 operations/second In Proceedings of the 2nd Inernational Workshop on

4. CORBA - CORBA system QoS Automated and Algorithmic Debugging, pages 277-291,
system end-to-end delay < 16 milliseconds 1995.

system throughput > 2500 operations/second

6

O
f2] Auguston, M., Gates. A., Lujan. M. Defining a Program Document orbos/99-02-05, March 1999.

Behavior Model for Dynamic Analyzers. In Proceedings of http://www.omg.org/cgi-bin/doc?orbos/99-02-05.
the 9th International Conference on Software Engineering [12] Object Management Group (OMG). Model Driven
and Knowledge Engineering. SEKE'97, pages 257-262, Architecture: A Technical Perspective. Technical Report,
1997. OMG Document No. ab/2001-02-01/04. February 2001.

[3] Bryant, B.R. Object-Oriented Natural Language ftp://ftp.omg.orglpub/docs/ab/O -02-04.pdf.
Requirements Specification. In Proceedings of ACSC 2000, [13] Orfali, R., and Harkey, D. Client/Server Programming with
the 23rd Australasian Computer Science Conference, JAVA and CORBA. The second edition. John Wiley &
Januarv 30-February 4, 2000, Canberra, Australia, pages Sons, Inc., 1998.
24-30, January 2000. [14] Raje, R. R., Bryant, B. R., Auguston, M., Olson, A M..

[4] Bryant, B. R., Lee, B.-S. Two-Level Grammar as an Burt, C. C. A Unified Approach for the Integration of
Object-Oriented Requirements Specification Language, Distributed Heterogeneous Software Components.
Proceedings (CR-ROM) of 35th Hawaii International Proceedings of the 2001 Monterey Workshop on
Conference on System Sciences, 2002, page 10. Engineering Automation for Software Intensive System
http://www.hicss.hawaii.edu/HlCSS_35/HICSSpapers/PDF Integration, Monterey, California, 2001, pp: 109-119.
documents/STDSLOI.pdf. [15] Raje, R. R., Auguston, M., Bryant, B. R., Olson A. M.,

[5] Clements. P., Donohoe. P., Kang, K., Northrop, L. Fifth Burt, C. C. A Quality of Service-Based Framework for
Product Line Practice Workshop Report. September, 2001. Creating Distributed Heterogeneous Software Components.
http://www.sei.cmu.edu/publications/documents/0l.reports Submitted for publication to Concurrency and
/01 tr027.html. Computation, 2001.

[6] Cohen, S., Gallagher, B., Fisher, M., Jones, L., Krut, R., [16] Raje R. R. UMM: Unified Meta-object Model.
Northrop, L., O'Brien, W., Smith, D., Soule, A. Third DoD Proceedings of 4th IEEE International Conference on
Product Line Practice Workshop Report. July 2000. Algorithms and Architecture for Parallel Processing,
http://www.sei.cmu.edulpublications/documents/00.reports ICA3PP'2000, pp: 454-465, Hong Kong, 2000.
/00tr024.html. [17] Seigel, J. CORBA Fundamentals and Programming. John

[7] Czamecki, K., Eisenecker, U.W. Generative Programming: Wiley & Sons, Inc., 1996.
* Methods, Tools, and Applications. Addison-Wesley, 2000. [18] Siram, N. N. An Architecture for the UniFrame Resource

[8] Lee, B.-S., Bryant, B. R. Automated Conversion from Discovery Service. MS thesis. Indiana University Purdue
Requirements Documentation to an Object-Oriented University Indianapolis, 2002.
Formal Specification Language. Proceedings of SAC 2002, [19] Software Engineering Institute. The Product Line
the 2002 ACM Symposium on Applied Computing, March Approach Initiative.
11-14, 2002, Madrid, Spain, 2002, pp. 932-936. http://www.sei.cmu.edu/plp/plp.init.html.

[9] Luqi, V. Berzins, J. Ge, M. Shing, M. Auguston, B.R. [20] Software Engineering Institute. A Framework for Software
Bryant and B.K. Kin. DCAPS - Architecture for Product Line Practice-Version 3.0.
Distributed Computer Aided Prototyping System. In http://www.sei.cmu.edufplp/framework.htmIl.
Proceedings of the 12th IEEE International Workshop on [21] Sun, C., Raje, R. R., Olson, A. M., Auguston, M., Bryant,
Rapid System prototyping, pp.103-109, June 25-2 7, 2001, B. R., Burt, C. C., Huang, Z. Composition and
Monterey Beach Resort, California, USA, IEEE Computer Decomposition of Quality of Service Parameters in
Society Press, 2001. Distributed Component-based Systems. To appear in

[10] Microsoft Corporation. DCOM Specifications, URL: - Prodeedings of the Fifth International Conference on
http://www.microsoft.comloledev/olecom, 1998. Algorithms and Architectures for Parallel Processing

[11] Object Management Group. CORBA Components. (ICA3PP 2002).
Technical report, Object Management Group TC

0

7

Composition and Decomposition of Quality of Service Parameters in
Distributed Component-Based Systems

Changlin Sun, Rajeev R. Raje, Mikhail Auguston
Andrew M. Olson Department of Computer Science

Computer and Information Science New Mexico State University
Indiana University Purdue University Indianapolis Las Cruces, NM 88003, USA

723 W. Michigan Street, SL 280 mikau@cs.nmsu.edu
Indianapolis, IN 46202, USA +1 505 646 5286

{ csun, rraje, aolson, csun } @cs.iupui.edu,
+1 317 274 5246/5174/9733

Zhisheng Huang
Barrett R. Bryant, Carol Burt Computer and Information Science

Computer and Information Sciences Indiana University Purdue University Indianapolis
The University of Alabama at Birmingham 723 W. Michigan Street, SL 280

1300 University Blvd. Indianapolis, IN 46202, USA
Birmingham, Alabama 35294-1170, USA zhuang@cs.iupui.edu

1{bryant, cburt} @cis.uab.edu, +1 205 934 2213 +1 317 274 5246

Abstract functional properties, and ignore the quality of service
(non-functional) properties, which are crucial in many

It is becoming increasingly acceptable that the application domains. A few examples of quality of service
component-based development is an effective, efficient parameters are: dependability, reliability, availability,
and promising approach to develop distributed systems. maintainability, adaptability, portability, evolvability,
With components as the building blcks, it is expected that achievability, security, presentation, throughput, result,
the quality of the end system can be predicted based on and turnaround time [3]. In a component-based
the qualities of components in the system. UniFrame is approach, it is relatively easy to glue components together
one such framework that facilitates a seamless to provide the desired system functionality, but it is
interoperation of heterogeneous distributed software difficult to guarantee the quality of service provided by a
components. As a part of UniFrame, a catalog of quality system made up of individual components. Hence, it is
of service (QoS) parameters has been created to provide critical to determine the distribution of a system property
a standard method for quantifying the QoS of software into its component properties (decomposition) and how to
components. In this paper, an approach for composition reason the system property from the property of its
and decomposition of these QoS parameters is proposed. individual components (composition). Currently, there is
A case study from the financial domain is indicated to no common and accepted design standard that can
validate this model. facilitate such composition and decomposition.
Keywords: Distributed systems, software components, In [1, 2] a framework, UniFrame, based on a unified
quality of service (QoS), composition, decomposition meta-component model (UMM) and a unified approach

(UA), is proposed for building distributed component-
based systems. In UMM, components are autonomous

1. Introduction entities that provide services and guarantee their quality.
The creation of a distributed software system using UA

* The development of distributed systems from has two levels: a) component level - developers create
reusable components is becoming increasing important components, test and validate the appropriate QoS and
because of its potential to reduce product development deploy the components on the network, and b) system
cost and time-to-market. Unfortunately, the current level - a collection of components, each with a specific
component-based approaches concentrate mainly on functionality and QoS, enables a semi-automatic

generation of a distributed software system. The focus of 2.3 Parameters with different ranges of
this paper is to study the mechanism of decomposition decomposition
and composition of various QoS parameters so that the
properties of the entire system can be inferred from the The dependence of a system level property on the
QoS properties of individual parameters and vice versa, component level property leads to several special
The first step towards composition and decomposition is decompositions of QoS parameters: universal, subset,
to identify and classify various QoS parameters. existential and component-specific decomposition. For

universal decomposition of QoS parameters, the system
2. Classification of QoS parameters level property decomposes into all of the components in

the system. Most of the QoS parameters have universal
In [3], sixteen QoS parameters are identified and decomposition, such as, availability, reliability, security,

described in a catalog. The aim of this section is to study etc. For subset decomposition of QoS parameters, the
these parameters from the perspective of composition and system level property decomposes into a subset of
decomposition, and classify them into different components in the system. For existential decomposition
categories. Such a classification provides the developer of of QoS parameters, the system level property decomposes
distributed systems the knowledge about how these QoS into any component in the system. Mobility is an example
parameters should be treated during the creation of a of QoS parameters with existential decomposition. For
software realization of a distributed system. component-specific decomposition of QoS parameters,

the system level property decomposes into a particular
2.1 Static and dynamic QoS parameters component. For example, presentation of a system is

decomposed into the presentation provided by the user-
Static QoS parameters can be evaluated by examining interface component of the system.

the internal structure of a software component. These. parameters are stable in different environments provided 2.4 Parameters with different aggregation rules
the internal structure of component is unchanged. The
examples of static QoS parameters are reliability, In the physical world, some properties show different
maintainability, portability, scalability, reusability, aggregation rules. For example, the mass or the energy of
presentation, usability, security, priority, and parallelism a system is the sum of the mass or the energy of
constraints. Dynamic QoS parameters, on the other hand, subsystems. The density or the temperature of a system is
can be measured by observing the system behavior at run- the average of the density or the temperature of
time. These parameters are tightly associated with the subsystems. The strength of a system is limited by the
deployment environment. Examples of dynamic strength of the subsystem with the minimum value of
parameters are throughput, turnaround time, capacity, strength. Similarly, for systems built from software
availability, and result. components, different QoS parameters may abide by

Static QoS parameters may compose well as they do different composition rules. For example, the turn-around
not tend to change during system execution. However, the time of a system is the sum of the turn-around time of
execution environment, which is not known in advance, each component in the system. The maintainability of a
influences dynamic QoS parameters and makes their system is an average of the maintainability of each
composition a difficult task. component in the system. The security of a system is

limited by the component with the minimum value of
2.2 Application dependent and independent QoS security.
parameters

3. System decomposition and composition
Different application domains require the use of models

different QoS parameters. For example, in the E-
commerce applications, availability, turnaround time, In this section, a decomposition and composition
throughput and usability are important, while in the model of QoS parameters is proposed. The model
visualization applications, the frame rate is critcal. Some includes the decomposition process, the composition
parameters are application dependent (e.g., throughput), process, and the corresponding rules.
while some others are application independent (e.g.,

* reusability). Obviously, the application independent 3.1 Decomposition rules
parameters are more convenient to deal with than the
application dependent parameters, because the latter need The decomposition process factorizes the system
application-specific information. QoS parameters to QoS parameters of components and

provides a rough estimate of the values for the QoS
parameters of individual components. To decompose the where P is the property of composed system, and pi
QoS parameters of systems, we identify following (i=1.2 ... ,n) is the property of component i in the system.
properties: at-least-one property, universal property, The equation (1) can be approximated as a weighted
subset property, at most one property, at-least-one-X sum, as indicated below:
property, universal-X property, subset-X property and at-
most-one-X property. P = wl. PI + w2 - P2 +... + w, p, (2)

A property X is an at-least-one property if, when any Where wi (i=l, 2 ... , n) is a constant coefficient (weight),
system has property X, at least one component of that for the component I, within the range [0, 1]. The
system has property X. A property X is a universal determination of wi is based both on the analysis and
property if, when any system has property X, all experimentation.
components of that system have property X. A property X For each QoS parameter, the equation (2) can be
is a subset property if, when any system has property X, a simplified. For example, in the case of maintainability,
subset of components of that system have property X. A equation (2) becomes:
property X is an at-most-one property if, when any system
has property X, at most one component of that system has P = w1 .pI + w2 -P2 +..., + wn .Pn (3)
property X. A property Y is an at-least-one-X property if, LOC.
when any system has property Y, at least one component where wi = , LOC=Lines of Code.

of that system has a certain property called X. A property YLOCj
Y is a universal-X property if, when any system has .=j

property Y, all components of that system have a certain For QoS parameters: security, adaptability, capacity,
property called X. A property Y is a subset-X property if, equation (2) becomes:

when any system has property Y, a subset of components
of that system have a certain property called X. A P = Min (Ph P2 P,,) (4)
property Y is an at-most-one-X property if, when any
system has property Y, at most one component of that For the QoS parameter turn-around time, equation (2)
system has a certain property called X. becomes:

Each QoS parameter needs to be classified using one
of these properties. For example, from the decomposition P = PI + P2 +. + Pý (5)

point of view, mobility is an at-least-one property,
security is a universal property, and frame rate is a Theoretically, for each QoS parameter, a

universal-X property, where X is throughput. Based on corresponding composition rule can be derived from
the definitions of these properties, the QoS parameters for equation (2) based on analysis and experimentation.
individual components can be classified into one of these
properties. Given the value of system-level QoS
parameters, an upper or lower bound of the value of theC Bank Database
QoS parameters of an individual component can be server server
estimated. For example, for turn-around time, the
component turn-around time TATi (i=l, 2 ... , n) need to
satisfy 0 < TATi < TAT, where TAT is the system turn- Figure 1. Bank account system architecture
around time, while for security, the component security Si
(i=1, 2 ... , n) need to satisfy Si > S, where S is the system 4. A case study
security requirement.

To illustrate the composition and decomposition of
3.2 Composition rules QoS parameters in developing distributed component-

based system, a simple bank account system (financial
During the composition process, the system QoS system) is discussed below. As shown in Figure 1, the

parameter is reasoned from the QoS parameters of system consists of three components: client, bank server,
components. Due to the causal link between the property and database server. For this bank account system, the
of the system and the properties of components in the following QoS parameters, based on the functionality, are
system, we assume the property of composed system identified: availability, turnaround time, security,
depends on the properties of components in the system. throughput, reliability, and usability. As turn-around time
The proposed equation for composition can be written as: is an important dynamic QoS parameter for most

applications, its composition rule is validated through

P = f (PI, P2.P,,) (1) experiments as indicated below.

The experimental system, as shown in Figure 2, these simple experiments that the model presented here
consists of three Ultra-250, SPARC Sun workstations. allows the prediction of values for the turnaround time
The workstations Phoenix and Magellan are connected with a good accuracy. Similar empirical studies for

using a 10OMbit Ethernet and the workstation Raleigh is. validating the composition rules for other parameters are

connected via a 1OMbit Ethernet. Phoenix is a file server being carried out. However, for the sake of brevity, and to
for the local area network. adhere to the space constraints, these are not reported in

this paper.

Magellan Phoenix Raleigh 5. Conclusions

The UniFrame approach provides a framework for
the development of distributed software systems based on
components by highlighting not only the functional but

1OOMbit] • Ibi"t also the QoS requirements. The QoS feature of a system

Switch Huh can be predicted by applying the composition and
decomposition rules to QoS attributes of the individual
components. These rules are based on the classification of

Figure 2. Experimental setup different QoS parameters. A simple case study presented
here empirically validates the composition/decomposition

The three components in the bank account system are rules described in this paper.
implemented using Java RMI. For the purpose of the
validation, each component has an instrumented code to 6. Acknowledgement
measure the dynamic QoS parameters during the
execution time.

ti the turnaround time for each is This material is based upon work supported by the US
I Office of Naval Research under award number N00014-

measured by running them (in isolation) on each of the 01-1-07460
three workstations multiple times. These experiments 01-1-0746.
yielded the following average turnaround times for the
three components under consideration: 34 ms (client References
component), 119 ms (bank server component) and 126
ms (database server component). Based on the [1] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson and C.
composition rule for turn-around time, the predicted turn- Burt. A Unified Approach for the Integration of Distributed
around time for the entire system is the summation of the Heterogeneous Software Components. Proceedings of the

individual turnaround times, i.e., the turnaround time for 2001 Monterey Workshop, Monterey, California, June

the system is predicted to be 278 ins. To experimentally [2001, pp. 109-119.
validatesteis predicated valuetohe three comsTonentsawe [2) R. Raje, M. Auguston, B. Bryant, A. Olson, C. Burt. A
validate this predicated value, the three components were Quality of Service-based Framework for Creating
deployed using two distributed configurations: a) the Distributed Heterogeneous Software Components.
client on Raleigh, bank server on Phoenix and database Technical Report, Department of Computer and
server ob Magellan, and b) the client on Raleigh and both Information Science, Indiana University Purdue University
the servers on Magellan. In both the cases, the system Indianapolis, 2001.
level turn-around time was measured. The error between [3] G. Brahnmath, R. Raje, A. Olson, M. Auguston, B.Bryant,
the predicted turnaround time and the actual turnaround C. Burt. A Quality of Service Catalog for Software

time, for both the configurations, was found to be of 3.3% Components. Proceedings of the Southeastern Software

and 3.1% respectively. Hence, it can be concluded from Engineering Conference, Huntsville, Alabama, April 2002.

0

* Automation of Software System Development
Using Natural Language Processing and

Two-Level Grammar

Beum-Seuk Lee and Barrett R. Bryant

Department of Computer and Information Sciences
The University of Alabama at Birmingham

Birmingham, AL 35294-1170 U. S. A.
{leebs, bryant}Dcis.uab.edu

Abstract. In software engineering, even with recent active research on
formal methods and automated tools, users' involvement is inevitable
and crucial throughout the software development lifecycle. Automation
of these manual tasks would assist the developers throughout the devel-
opment. Our project goal is to help the engineers to resolve ambiguity in
natural language (NL) using Natural Language Processing and to over-
come different levels of abstraction between requirements documents and
formal specifications using Two-Level Grammar (TLG). The result is a
system that assists developers to build a formal representation from the
informal requirements for rapid prototyping and even implementation.

Keywords: Natural Language Processing, Formal Specification, Automated Soft-
ware Engineering, Two-Level Grammar (TLG)

1 Problem Statement

Even the rigorous development of formal specifications and automated tool kits
in recent years hasn't eliminated the practical importance of requirements doc-
uments written in natural language and the necessity of users' involvement
throughout the software development life cycle.

Even though natural language is inherently object-oriented and descriptive
with strong representation power, its syntax and semantics are not formal enough
to be used directly as a programming language. Therefore the requirements doc-
umentation written in NL has to be reinterpreted into a formal specification
language by software engineers. Pohl rightly stated regarding this process that
improving an opaque system comprehension into a complete system specifica-
tion and transforming informal knowledge into formal representations are the
major tasks in requirements engineering [1]. When the system is very compli-
cated, which is mostly the case when one chooses to use formal specification,
this conversion, if manually done, is both non-trivial and error-prone, if not
implausible.

Many similar tasks of manual involvement occur and are repeated to translate
the requirements documents into a formal specification or into final executable
code regardless the type of the system under development. Some examples of
these tasks are domain-specific knowledge collection, correct interpretation of
requirements, specification update, and maintenance of consistency, to name a
few.

It is well known that as much as 60 percent of the errors that appear during
a system's life cycle have their origin in the requirements phase [2]. It is also
well known that the closer to correct an error found in the development and
later stages of system development is orders of magnitude higher than to correct
the same error found during the requirements stage [3]. Therefore ensuring the
correctness of the requirements as well as their interpretation and translation
cannot be overemphasized.

The challenge of formalizing a natural language requirements document,
which takes up major portion of human involvement in the system development,
results from many factors such as miscommunication between domain experts
and engineers. However the major bottleneck of this conversion is from the in-
born characteristic of ambiguity of NL and the different level of the formalism
between the two domains of NL and formal specification.

To handle this ambiguity problem, some have argued that the requirements
document has to be written in a particular way to reduce ambiguity in the
document [4]. Others have proposed controlled natural languages (e.g., Attempto
Controlled English (ACE) [5]) which limit the syntax and semantics of NL to
avoid the ambiguity problem. Another approach to NL requirements analysis is
to search each line of the requirements document for specific words and phrases
for the purpose of quality analysis [6]. A similar project [7] focuses mainly on
the automatic indexing and reuse of the software components in the requirement
documents. However there has been no attempt to automate the conversion from
requirements documentation into a formal specification language for prototyping
as well as implementation.

In our research, Natural Language Processing (NLP) [8] is used to handle
the ambiguity problem in NL and Two Level Grammar (TLG) [9] is used to deal
with the different formalism level between NL and formal specification languages
to achieve the automated conversion from NL requirements documentation into
a formal specification (in our case VDM+± [10] - an object-oriented extension
of the Vienna Development Method [11]) and to reduce and reuse the developers
involvement.

2 Introduction

To achieve the conversion from requirements documents to a formal specification
several levels of conversions are required. First the original requirements written
in natural language is to be refined as a preprocessing of the actual conversion.
This refinement task involves checking spellings, grammatical errors, consistent
use of vocabularies, organizing the sentences into the appropriate sections, etc.

Next the refined requirements document is expressed in XML format. By using
XML to specify the requirements, XML attributes (meta-data) can be added
to the requirements to interpret the role of each group of the sentences during
the conversion. The information of the domain-specific knowledge is specified in
XML. The domain-specific knowledge describes the relationship between com-
ponents and other constraints that are presumed in requirements documents or
too implicit to be extracted directly from the original documents.

Then a knowledge base is built from the requirements document in XML
using NLP to parse the documentation and to store the syntax, semantics, and
pragmatics information. In this phase, the ambiguity is detected and resolved, if
possible. Once the knowledge base is constructed, its content can be queried in
NL. Next the knowledge base is converted, with the information of the domain
specific knowledge, into Two Level Grammar (TLG) by removing the contex-
tual dependency in the knowledge base. TLG, the most NL-like specification
language which is a unification of functional, logic, and object-oriented program-
ming styles, is used as an intermediate representation to build a bridge between
the informal knowledge base and the formal VDM++ representation.

Finally the TLG code is translated into VDM++ by data and function map-
pings. VDM++ is chosen as the target specification language because VDM++
has many similarities in structure to TLG and also has a good collection of tools
for analysis and code generation. Once the VDM++ representation of the speci-
fication is acquired we can do prototyping of the specification using the VDM++
interpreter. Also we can convert this into a high level language such as JavaTM

or C++ or into a model in the Unified Modeling Language (UML) [12] using
the VDM++ Toolkit [13]. The entire system structure is shown in Figure 1.

Requirements Document in Nb

Meta-data insertion

Requirements Document in XML, DomainKnowledge in 0

Contetual Natural Language Processg
•' • L•Knowledge Base in XML

Ae.Knowledge Bas,,se

Decontextualization

Two Level Grammar

Data and Function mappings]

Viena Development Method I
I[Rose-VDM Li'nk]' M L

IFDVM+Too! Kit (interpreter

Code Generators Ja C

Fig. 1. System Structure.

The translation of our system is incremental and iterative reflecting the
changes made throughout the system development. The user interaction is likely
to happen at any stage of the translation to supervise and assist the automation.
By keeping track of user's preferences and configurations for each iteration and
automating the translations accordingly, the user's involvement can be reason-
ably reduced.

In the sections which follow, we will present the following simplified (thus
incomplete) Computer Assisted Resuscitation Algorithm (CARA) [14] Infusion
Pump Control System to illustrate our approach and describe the various system
components.

HOST is powered up and all software subsystems are available.
The pump software system is now in the wait operating state. Patient
with IV/pump running is placed onto the HOST. Pump cable is connected
to the HOST. HOST now provides power for pump. Pump software system
detects pump connection and monitors occlusion and airlock logic levels.
Pump subsystem display is automatically brought forward to the secondary
display. Pump software subsystem detects back EMF and fluid impedance
and begins to log infusion rate. Pump continues to operate on it's
hardware setting. Pump software system is now in manual operating state.
One of the blood pressure sensors is connected to the patient.
Pump software system detects clean blood pressure signal and activates
automatic servo-control start button. When the start button is pressed
the MAC controls the pump and begins resuscitation to the prescribed
blood pressure setpoint. The system is now in the automatic
servo-control on operating state when the pump is infusing fluid into
a patient using the hardware (HW) flow setting on the pump. If for any
reason (change IV bags, change or fix blood pressure sensor, etc.) it
becomes necessary to pause the MAC, the pause button on the display may
be pressed. This causes the infusion pumping to cease. The system is
now in the automatic servo-control paused operating state. The system
maybe restarted at any time. When the patient is to be removed from
the HOST, the pump software system should be returned to the manual
operating state. The blood pressure sensor should be removed from the
patient and then the pump cable can be removed from the HOST.
This allows the pump to continue operating in standalone mode or the
IV infusion to be discontinued.

3 Requirements in XML

Rearranging related information together in the requirements will ease the con-
version. Specially because we are assuming that the requirements can contain
different aspects of information (functional, non-functional or even a mixture of
both) about the system. Even requirements that are functionality-oriented can
have different types of functionality. For example, they can be object-oriented,
procedural, real time-based, event-based, etc. Rearranging related information
together will ease the conversion. This can be achieved by specifying the role

0

of each paragraph using XML data structure and notations. This will help the
knowledge base to maintain the correct structure.

The CARA specification in XML is shown as follows.

<document>
<c title = "Mode" meta = "mode">
<c title = "wait state" meta = "submode">

<p meta = "pre-cond">
<s>HOST is powered up and all software subsystems are available</s>

</p>
<p meta = "pre-exec">
<s>Patient with IV/pump running is placed onto the HOST</s>
<s>Pump cable is connected to the HOST</s>

</p>

<p meta = "exec">
<s>HOST now provides power for pump</s>

</p>

<p meta = "break-cond">
<s>When the pump is infusing fluid into a patient using

the hardware (HW) flow setting on the pump the system is no longer in
the wait state</s>
</p>

</c>
<c title = "manual state" meta = "submode">

<p meta = "pre-exec">
<s>Pump software system detects pump connection and monitors occlusion

and airlock logic levels </s>
<s>Pump subsystem display is automatically brought forward to the

secondary display</s>
<s>Pump software subsystem detects back EMF and fluid impedance and

begins to log infusion rate</s>
<s>Pump continues to operate on it's hardware setting</s>
<s>One of the blood pressure sensors is connected to the patient</s>
<s>Pump software system detects clean blood pressure signal and

activates automatic servo-control start button</s>
</p>

</c>

<c title = "autocontrol on state" meta = "submode">
<p meta = "pre-exec">
<s>When the start button is pressed the MAC controls the pump and

begins resuscitation to the prescribed blood pressure setpoint</s>
<Ip>

<Ic>
<c title = "autocontrol paused state" meta = "submode">
<p meta = "pre-exec">
<s>If for any reason (change IV bags, change or fix blood pressure

sensor, etc.) it becomes necessary to pause the MAC, the pause
button on the display may be pressed</s>

<s>This causes the infusion pumping to cease</s>
</p>

<p meta = "breakcond >

<s>The system maybe restarted at any time</s>
<Ip>
<p meta = "break-exec">

<s>When the patient is to be removed from the HOST, the pump software

system should be returned to the manual operating state</s>

<s>The blood pressure sensor should be removed from the patient and

then the pump cable can be removed from the HOST</s>

<s>This allows the pump to continue operating in standalone mode or
the IV infusion to be discontinued</s>

</p>

<Ic>
</c>

</document>

The meta attribute in XML indicates the role of each paragraph. Namely
it shows if the group of the sentences describes state types (mode), execu-
tion types (-exec), various conditions (_cond), etc. submode indicates the state.
In the CARA example, there are four distinctive states; wait state, manual
state, autocontrol on state, and autocontrol paused state. In a state, precon-
ditions (pre-cond) have to be satisfied to enter the state. Some statements
(pre-exec) will be executed when the system enters into a state. Other state-
ments (exec) will be executed while the system is in the state. If any break con-
ditions (break-cond) are satisfied in the state, the system will leave the state.
There may be some cases where break conditions will execute some statements
(break-exec) before breaking out of the state. Also some default statements
(post-exec) are executed before leaving the state. We have specified these meta
attributes for various types of functionality in requirements to cover a wide range
of different requirements documents. Using a tree-like structure in XML the spec-
ifications become more descriptive as the tree expands further. Organizing and
representing the requirements document in XML according to the roles of the
specifications of the system not only enhances understanding of specifications
but also helps to standardize requirements composition.

4 Domain-Specific Knowledge in XML

A requirements document usually contains specific information about how the
system should work whereas the domain knowledge describes how the system is
composed by its components and the constraints imposed on the components or
on the relations among them. The domain-specific knowledge is a world knowl-
edge specific to a certain domain in which the system is defined. This is well
tied into the concept of the family or the ontology of systems. Depending on
the level of abstraction (or the details described) of the domain knowledge, the
effort to construct it can vary. By limiting the level of abstraction, the body of
the knowledge can be reduced into a reasonable size and so can the effort to
build it. Usually the domain-specific knowledge is defined informally or only for

a specific project, not reusable or extensible for similar systems (the systems
in the same family). By using XML to specify the domain knowledge with a
minimum semantics, not only can the specification be formally defined but also
it can be extensible gradually building up an ontology of systems.

In our research the domain knowledge specified in XML shares many simi-
larities with DARPA Agent Markup Language (DAML) [15] which is a frame-
based language with semantics to describe ontology. Because domain knowledge
is more than just an ontology, DAML is not expressive enough to describe the
whole aspect of the domain knowledge. However using the XML syntax a domain
knowledge can be specified in various ways leaving the interpretation of its se-
mantics totally up to the system that uses it [16]. Therefore when a specification
for domain-specific knowledge in XML is to be developed, its formal semantics
as well as its expressiveness has to be considered at the same time.

The following describes an example of the domain knowledge of Car to illus-
trate the use of domain-specific knowledge expressed in XML in our project.

<system name = "Car">

<component name = "Engine">
<amount type ="exactly" value = "1"/>
<unit type = "volume" value = "liter"/>
<subcomponent name="Cylinder" type = "integer">
<amount type ="one-of" value = 14,6,8"/>

</subcomponent>
<relation with = "Starter" type ="pass-to" value ="signal"/>

</component>

<component name = "Wheel"/>
<component name = "Body">
<relation with = "Frame" type ="synonym"/>

</component>

<relation with = "Vehicle" type ="inheritance" value ="Parent"/>
<relation with = "Van" type ="inheritance" value ="child"/>

</system>

According to the above domain specification, Car is composed of Engine,
Wheel, Control, and Body. Vehicle is a parent of car whereas Van is a type of
Car. Car can have exactly one Engine and the unit of engine is volume expressed
in liters. Engine has Cylinder as its subcomponent. The number of Cylinders,
which is as an integer number and is representative part of the subcomponent,
can be either 2, 6, or 8. Starter passes a signal to Engine (to turn the motor).
Body of Car also can be called as Frame.

The following is Document Type Definition (DTD) for the domain knowledge
in XML, which defines the formal semantics of the domain-specific knowledge
while pertaining proper expressive power.

<!ELEMENT system (component Irelation)*>
<!ELEMENT component (amount?, unit?, (subcomponentlrelation)*)>
<!ELEMENT subcomponent amount?>
<!ELEMENT amount EMPTY>

0

<!ELEMENT unit EMPTY>
<!ELEMENT relation EMPTY>

<!ATTLIST system name CDATA #REQUIRED>

<!ATTLIST component name CDATA #REQUIRED>

<'ATTLIST subcomponent name CDATA #REQUIRED type CDATA #IMPLIED>

<'ATTLIST amount type CDATA "exactly" value CDATA #REQUIRED>
<!ATTLIST unit name CDATA #IMPLIED type CDATA #REQUIRED>
<!ATTLIST relation with CDATA #IMPLIED type CDATA #REQUIRED value

CDATA #IMPLIED>

Note that the domain-specific knowledge in XML for the translation doesn't
have to describe the domain exhaustively. Namely most of the elements and
attributes are optional and attribute values can be any character strings. For
example, the relationship element can represent inheritance, acronyms, message
passing, etc. The minimum information required to guide the translation would
be sufficient with the possibility of adding on more information later when nec-
essary.

The domain knowledge for our CARA example is shown as follows.

<system name = "CARA system">

<component name = "Computer Assisted Resuscitation Algorithm">
<subcomponent name = "Display"/>

<subcomponent name = "Button"/>
<subcomponent name = "Pump Software System"/>

<subcomponent name = "MAC"/>
<relation with = "System" type = "hypernym"/>
<relation with = "Software" type = "hypernym"/>

<relation with = "Algorithm" type = "hypernym"/>
<relation with = "CARA" type = "acronym"/>

</component>
<component name = "Patient"/>
<component name = "HOST">

<subcomponent name = "Pump"/>
</component>

</system>

The above specification describes that the whole system is composed of by
Computer Assisted Resuscitation Algorithm, Patient, and HOST. Computer
Assisted Resuscitation Algorithm is a type of Algorithm, Software, or
System that can be abbreviated as CARA.

In the natural language documents one concept can be represented by many
different ways causing the translation hard to cluster similar information to-
gether. These can be acronym, synonym, and hypernym. From the CARA ex-
ample, the word Computer Assisted Resuscitation Algorithm' is interchangeable
with 'Algorithm' or 'CARA'. By using a minimum set of representative words
that describes the entire components in the domain-specific knowledge, one-to-
many relations between words and their various representations can be obtained
and thus provides a simpler source to translate. The full set of words in the

0

requirements documents are mapped into the minimum set of representative
words by measuring similarity among words. The hypernym and the location of
the common words are used for this estimation.

In summary, by specifying domain-specific knowledge in XML and limiting
the scope of the knowledge the effort needed to build up the domain knowledge
for the translation can be greatly reduced.

5 Conversion from XML to Knowledge Base

The raw information of the requirements document in natural language is not
in the proper form to be used directly because of the ambiguity and implicit
semantics in the document. Therefore an explicit and declarative representation
(knowledge base) is needed to represent, maintain, and manipulate knowledge
about a system domain [171. Not only does the knowledge base have to be expres-
sive enough to capture all the critical information but also it has to be precise
enough to clarify the meaning of each knowledge entity (sentence). In addition,
the knowledge base has to reflect the structure of TLG into which the knowledge
base is translated later.

The knowledge base isn't a simple list of sentences in the requirements doc-
ument. The linguistic information of each sentence such as lexical, syntactic,
semantic, and most importantly discourse level information has to be stored
with proper systematic structure.

Each sentence of the requirements documents has to be represented in a way
that eases the interpretation of the sentence. In computational linguistics this is
done by constructing a parse tree of the sentence, which contains the syntactic
information of the sentence. By using this semantic information we can tell what
type of operation a certain object executes on other objects.

To build a parse tree, each sentence in the requirements document is read by
the system and tokenized into words. At the syntactical level, the part of speech
(e.g. noun, verb, adjective) and the part of sentence (e.g. subject and object)
of each word are determined by standard parsing techniques [8]. The corpora
of statistically ordered parts of speech (frequently used ones being listed first)
of about 85,000 words from Moby Part-of-Speech H [18] are used to resolve the
syntactic ambiguity when there is more than one valid parsing tree. The system
is able to handle elliptical compound phrases, comparative phrases, compound
nouns, and relative phrases to allow the natural language in the requirements
documents to be less controlled thus more natural.

Also the anaphoric references (pronouns) in a sentence are identified accord-
ing to the current context history. A pronoun can represent a word, sentence, or
even context. It is worthwhile to mention here that the requirements documents
are easier to process than other types of textual documents in the sense that usu-
ally requirements documents have well defined structures with less ambiguities
and infrequent use or narrow reference scope of pronouns.

Once the references of pronouns are determined, each sentence is stored into
the proper context in the knowledge base. The structure of the knowledge base

0

reflects the structure of the requirements in XML. The meta attribute informa-
tion from XML is also stored in the knowledge base to be used for the translation
from knowledge base into TLG. If no meta attribute or data structure is specified
in the requirements in XML, the system totally relies on the linguistic informa-
tion in the document to build the knowledge base according to the context. For
more information on this process, we refer the readers to [19]. A part of the
CARA knowledge base is shown in the Figure 2. The knowledge base of the

~~HS be powered____ up

Pum cabl bain eo ed fronnce O to H bOrST e ro T

S Fig. 2. Knowledge base for CARA.

CARA system contains the meta information from the XML requirements in its
tree-like structure as well as the linguistic knowledge.

In summary, the knowledge base stores not only the linguistic information
of each sentence but also the data structure and meta information of related
sentences as specified in the requirements in XML. Along with this process,
linguistic ambiguity is detected and resolved in parsing and construction of the
knowledge base.

6 Transition from Knowledge Base to TLG

Two-Level Grammar (TLG) may be used to achieve translation from an infor-
mal NL specification into a formal specification. Even though TLG has NL-like
syntax its notation is formal enough to allow formal specifications to be con-
structed using the notation. It is able not only to capture the abstraction of the
requirements but also to preserve the detailed information for implementation.
The term "two level" comes from the fact that a set of domains may be definedma Lseiiainit omlseiiain vntog L a Llk

using context-free grammar, which may then be used as arguments in predicate
functions defined using another grammar. TLG may be used to model any type
of software specification. The basic functional/logic programming model of TLG
is extended to include object-oriented programming features suitable for modern
software specification [20). The syntax of the object-oriented TLG is:

class Class-Name.
DataName {, Data_Name}::DataType {, Data_Type}.

Rule-Name Rule-Body {, RuleBody}.
end class [Class-Name].

where the term that is enclosed in the curly brackets is optional and can be
repeated many times, as in Extended Backus-Naur Form (EBNF). The data
types of TLG are fairly standard, including both scalar and structured types, as
well as types defined by other class definitions. The rules are expressed in NL
with the data types used as variables.

The conversion from the knowledge base to TLG flows very nicely because
the knowledge base is built with the structure taking this translation into con-
sideration. The root of each context tree becomes a class. And then the body
of each class is built up with the sentence information in the sub-contexts of
the root. Combined with the specification in the domain-specific knowledge, the
knowledge base of the CARA example would be translated into the following
TLG specification.

class Mode.

main

wait state;
manual state;
autocontrol on state;
autocontrol paused state.

wait state:
HOST is powered up,
PumpSoftwareSystem is available,

Patient is placed onto HOST,
Pump Cable is connected to HOST,
while true then

if Pump is infusing Fluid into Patient then
break,

HOST provide Power for Pump

end while.

manual state:
Pump-Software-System detects Pump-Connection,
PumpSoftware-System monitors Occlusion and AirlockLogicLevels,
Pump Display is brought to Secondary-Display,
PumpSoftwareSystem detects BackEMF and Fluid-Impedance,
PumpSoftware-System begins to log Infusion-Rate,

Pump continue to operates on Hardware-Setting,
BloodPressureSensor is connected to Patient,
PumpSoftwareSystem detects CleanBloodPressureSignal,

PumpSoftwareSystem activates AutomaticServo-controlStartButton.

autocontrol on state:
if Start-Button is pressed then

MAC controls Pump,

MAC begins Resuscitation to PrescribedBloodPressureSetpoint
end if.

autocontrol paused state:

if necessary to pause MAC then
Pause-Button is pressed,
cause Infusion-Pumping to cease

end if,

while true then

if Patient is removed from HOST then
BloodPressureSensor is removed from Patient,
Pump Cable is removed from HOST,
allow Pump to continue operating in StandaloneMode,
allow IV-Infusion to be discontinued,

break

end if
end while.

end class.

The main function will execute all 4 state functions (wait state, manual
state, autocontrol on state, autocontrol paused state) in parallel. How-
ever preconditions (pre-cond) in each state will be used as guarded statements
to determine which state the system is currently in. For each state function, first
the preconditions will be checked. If all the preconditions are met, pre-exec
statements are executed once. Then in the infinite while loop exec statements
are executed. If break-exec and break-cond statements are used for the system
to break out the loop. If there are any post-exec statements, they are executed
before returning from the function.

The TLG code is translated into VDM++ by data and function mappings

(for more details on this translation we refer the readers to [9]). Once we have
translated the TLG specification into a VDM++ specification we can convert
this into a high level language such as JavaTM or C++, using the code generator
that the VDM++ ToolkitTM provides. Not only is this code quite efficient, but
it may be executed, thereby allowing a proxy execution of the requirements. This

allows for a rapid prototyping of the original requirements so that these may be
refined further in future iterations. Namely the inconsistencies, contradictions,
and ambiguities hidden in the informal description can be discovered in the
formal representation using the VDM++ Toolkit. Another advantage of this
approach is that the VDM++ Toolkit also provides for a translation into a

0

model in the Unified Modeling Language (UML) using a link with Rational
RoseTM

7 Contribution and Conclusion

This research project is developed as an application of formal specification and
computational linguistic techniques to automate the conversion from a require:-
ments document written in NL to a formal specification language while assisting
the developers with repetitive tasks. The knowledge base is built up from a NL
requirements document in XML in order to capture the contextual information
from the document while handling the ambiguity problem and to optimize the
process of its translation into a TLG specification with the aid of domain-specific
knowledge in XML. Due to its NL-like flexible syntax without losing its formal-
ism, TLG is chosen as a formal specification to fill the gap between the different
level of formalisms of NL and formal specification language.

The system is working for some small examples such as the requirements for
an Automatic Teller Machine (ATM), with associated banking system domain
knowledge. We are performing evaluations of the system for various, more com-
plex, requirements documents, such as the CARA Infusion Pump Controller.
The system has been useful' in identifying problems and ambiguities with such
specifications and in identifying additional information necessary to complete
the implementation. It is expected that the technology we are developing will be
applicable to these requirements documents as well.

If successful, this will provide a very useful tool to assist software engineers in
moving from the requirements document to the formal specification. Our future

* work is to continue developing the system to improve usability and robustness
with respect to its coverage of requirements documents. When finalized, it is
expected that by using the formalized context in NLP and TLG as a bridge
between the requirements document and a formal specification language, we can
achieve an executable and reusable NL specification for a rapid prototyping of
requirements, as well as development of a final implementation assisting the
developers throughout the software development life cycle.

Acknowledgements. This material is based upon work supported by, or in part by,
the U.S. Army Research Laboratory and the U. S. Army Research Office under con-
tract/grant number DAAD19-00-1-0350 and by the U. S. Office of Naval Research
under award number N00014-01-1-0746. The authors would like to thank IFAD for
providing an academic license to the IFAD VDM Toolbox in order to conduct this
research.

References

1. Pohl, K.: The Three Dimensions of Requirements Engineering. Conference on
Advanced Information Systems Engineering (1993) 275-292

2. Davis, A.: Software Requirements Analysis and Specification. Prentice-Hall (1990)

3. Boehm, B.W.: Software Engineering Economics. IEEE Transactions on Software
Engineering 10 (1984) 4-21

4. Wilson, W.M.: Writing Effective Natural Language Requirements Specifications.
Technical report, Naval Research Laboratory (1999)

5. Fuchs, N.E., Schwitter, R.: Attempto Controlled English (ACE). Proc. CLAW 96,
1st Int. Workshop Controlled Language Applications (1996)

6. Wilson, W.M., Rosenberg, L.H., Hyatt, L.E.: Automated Quality Analysis Of
Natural Language Requirement Specifications. Technical report, Naval Research
Laboratory (1996)

7. Girardi, M.R.: Classification and Retrieval of Software through their Description
in Natural Language. PhD thesis, Computer Science Department University of
Geneva, Switzerland (1996)

8. Jurafsky, D., Martin, J.: Speech and Language Processing. Prentice-Hall (2000)
9. Bryant, B.R., Lee, B.S.: Two-Level Grammar as an Object-Oriented Require-

ments Specification Language. Proc. 35th Hawaii Int. Conf. System Sciences (2002)
http://www.hicss. hawaii. edu/HICSS-35/HICSSpapers/PDFdocuments/STDSLOl .pdf

10. Diirr, E., van Katwijk, J.: VDM++ - A Formal Specification Language for Object
Oriented Designs. Proc. CompEuro '92 (1992) 214-219

11. Bjcrner, D., Jones, C.B.: The Vienna Development Method: The Meta-Language.
Springer-Verlag (1978)

12. Quatrani, T.: Visual Modeling with Rational Rose 2000 and UML. Addison-Wesley
(2000)

13. IFAD: The VDM++ Toolbox User Manual. Technical report, IFAD (www. if ad. dk)
(2000)

14. Walter Reed Army Institute for Research (WRAIR): CARA Specification: Ro-
prietary Document. Technical report, W-RAIR, Dept. of Resuscitative Medicine
(2001)

15. Decker, S., Melnik, S., van Harmelen, F., Fensel, D., Klein, M.C.A., Broekstra, J.,
Erdmann, M., Horrocks, I.: The semantic web: The roles of XML and RDF. IEEE
Internet Computing 4 (2000) 63-74

16. Cleaveland, J.C.: Program Generators with XML and Java. Prentice-Hall (2001)
17. Lakemeyer, G., Nebel, B.: Foundations of knowledge representation and reasoning.

Volume 810. Springer-Verlag Inc. (1994)
18. Grady, W.: Moby Part-of-Speech II (data file) (1994)
19. Lee, B.S., Bryant, B.R.: Contextual Knowledge Representation for Requirements

Documents in Natural Language. Proc. 15th International FLAIRS Conference
(2002) 370-374

20. Bryant, B.R.: Object-Oriented Natural Language Requirements Specification.
Proc. ACSC 2000, 23rd Australasian Comp. Sci. Conf. (2000) 24-30

Formal Specification of Non-Functional Aspects in Two-Level
Grammar *

Chunmin Yang Beum-Seuk Lee Barrett R. Bryant Carol C. Burt

Department of Computer and Information Sciences
The University of Alabama at Birmingham

Birmingham, AL 35294-1170, U. S. A.
{yangc, leebs, bryant, cburt}@cis.uab.edu

Rajeev R. Raje Andrew M. Olson Mikhail Auguston

Department of Computer and Information Science Department of Computer Science
Indiana University Purdue University Indianapolis New Mexico State University

Indianapolis, IN 46202, U. S. A. Las Cruces, NM 88003, U. S. A.
{rraje, aolson}@cs.iupui.edu mikau@cs.nmsu.edu

Abstract

In the UniFrame project, non-functional aspects of distributed software systems are described infor-
mally in natural language based on a quality of service (QoS) parameter catalog. Then the descriptions
are automatically translated into specifications in a formal specification language, Two-Level Grammar
(TLG). The result is a formal QoS specification for rapid prototyping of non-functional aspects of a
system as well as their efficient distribution.

Keywords: Formal Specification, Non-functional properties, Quality of Service, Two-Level Grammar (TLG),
UniFrame, Vienna Development Method (VDM)

1 Introduction

With the rapid development and increased demand for software systems implemented on computer networks,
distributed computing has become the focus of research interest. Even though many techniques have been
developed for this purpose most of them focus mainly on the functional aspects of the system neglecting the
non-functional aspects. It has been more and more realized that non-fimctional properties are as important
as the functional ones for a successful software product.

The non-functional aspects of software systems are not so much emphasized as the functional aspects. due to several reasons:

*This material is based upon work supported by, or in part by, the U.S. Army Research Laboratory and the U. S. Army
Research Office under contract/grant number DAAD19-00-1-0350 and by the U. S. Office of Naval Research under award number
N00014-01-1-0746.

r D
QoS Requirements Document in NL

QoS Requirements Document in XML

Natural Language Processing

Knowledge Base

Decontextualization

Two Level Grammar

Data and Function mappings

Vienna Development Method

IRose-VDM Link M
SIFAD VD+ olKit[Interpreter

VM++ Tool ate

Code Generators JaC+

Figure 1: System Structure.

1. The developers are more concerned with the functionality of the software product than its quality.

Their main goal is first to make sure the software is able to provide the functionality as specified by the

users. With the move toward component-oriented development, functionality by itself is not enough

to meet the users' expectations. To develop a software with high quality, both the functional and the

non-functional aspects of the software have to be considered with care.

2. Unlike functional aspects of the specifications, non-functional aspects of the specifications are usually

described in an abstract and non-quantified way, thus making it more difficult to describe formally.

3. Non-functional aspects of the specification are complex. Some of the non-functional properties may
interact with other non-functional properties. Therefore the effect of non-functional properties of the
system does not remain the same all the time, but rather change dynamically according to other
non-functional properties.

4. Unlike functional properties, it is difficult to formally specify non-functional properties, although there

have been several research projects with this goal, e.g. Aster [1], Qedo [13], QuO [12], to name a few.

Our goal is to enable non-functional requirements to be described informally in natural language and then
automatically translated into a formal specification for use in validating component-based software system

quality. In our project, first Quality of Service (QoS) requirements in natural language (NL) are represented
using eXtensible Markup Language (XML) [3] element and attribute notations which specify the types of
non-functional properties and attributes (meta information). This XML specification is translated into a
Knowledge Base using Natural Language Processing. Knowledge Base contains the linguistic information
as well as meta information of the QoS description. This Knowledge Base is then converted into Two-Level
Grammar (TLG) [4] using the collected information in the Knowledge Base. TLG is a formal specification
language that is flexible in its natural-language like syntax without losing its formalism. The non-functional
specifications in TLG in turn can be translated into VDM++ [7] (an object-oriented extension of the Vienna
Development Method [2]) using data and function mappings. VDM++ is chosen as the target specification
language because VDM++ has many similarities in structure to TLG and also has a good collection of tools

* for analysis and code generation. Once the VDM++ representation of the specification is acquired we can

do prototyping of the specification using the VDM++ interpreter. Also we can convert this into a high level
language such as JavaTM or C++ or into a model in the Unified Modeling Language (UML) [14] using the

VDM++ Toolkit [8]. The entire system structure is shown in Figure 1. In this paper, we mainly focus on
the mechanism to formally specify non-functional aspects of a system in TLG followed by brief illustration
of the conversion process from the QoS descriptions in NL into TLG.

2

0
2 Quality of Service (QoS)

Quality of Service is a concept originated in the networking area and now it has been extended to software
development, in which it is also referred to as "non-functional properties."

To describe the properties of a software product, we need to consider both the functional and non-
functional aspects. The former is very straightforward and describes what the software is expected to do. The
latter describes how the functions are exhibited. Functional aspects, in practice, earn more attention than
the non-functional aspects. From the users' point of view, whether the software can provide the functions
as expected is the main issue. More over it is usually easy to prototype or to verify the functionality of
the system. On the other hand, it is not so easy to measure the non-functional properties. Functional
properties typically have localized effects in the sense that they affect only the part of software functionality
whereas non-functional properties specify global constraints that must be satisfied by the software such as
performance, fault-tolerance, availability and security.

Along with the development of software engineering techniques, the non-functional properties of a software
product become more and more important criteria in classifying a good software product from a poor one
since most of the software would successfully provide the required functionality. Therefore the product with
non-functional properties will dominate the ones without them. At the same time, there is an increasing
demand for fault-tolerance, multimedia, real-time, and other high quality applications, thus the requirement
for non-functional properties will become an essential part of software development.

To describe and analyze the non-functional properties, we divide them into three aspects: non-functional
attributes, non-functional actions, and non-functional properties. Non-functional attributes are the features
or characteristics to be described. A significant characteristic of a non-functional attribute is its decom-
posability, i.e., a non-functional attribute could be decomposed into multiple more detailed non-functional
attributes. Non-functional actions are the input from the outside world which has effect on the attributes.
Non-functional properties are the constraints of non-functional actions over the non-functional properties.

This work, to formally specify the quality of components and component complexes (results of com-
positions of components), is a part of the UniFrame project [16] in which the aspects of a meta-model
will be specified and verified in the context of combining heterogeneous components, and provides a QoS
management to the interactions between clients and services for distributed object systems by supporting
frameworks for multiple QoS categories.

In the project, three steps are taken to assure the QoS of a Distributed Computing System (DCS): first,
creation of a catalog for the QoS parameters, then provision of a formal specification of these parameters,
and construction of a mechanism for ensuring these parameters, both at the individual component level and
at the entire system level.

A catalog of Quality of Service parameters is proposed in [15] which contains the parameters such as
throughput, capacity, end-to-end delay, parallelism constraints, availability, ordering constraints, error rate,
security, transmission, adaptivity, evolvability, reliability, stability, result, achievability, priority, compati-
bility, and presentation. The format of this catalog is based on the format of the design patterns catalog.
Each parameter is described according to the following features: name, intent, description, influencing fac-
tors, measure, known usages, aliases, related parameters, consequences, levels, technologies, applications,
exceptions, and example scenario.

There are some reasons that non-functional properties are not explicitly described. First of all, non-
functional parameters are more difficult than functional parameters to be dealt with in the sense that they
are far more abstract and more complex than the functional parameters. For example, the requirement
description may have a phrase like "the system should have very high level of security". But what level of
security is considered to be "high?" How can we verify if this system meets this requirement? Obviously, this
ambiguous and very inexact description is not descriptive enough to be used as the specification on which the
software is developed. In addition, non-functional aspects of the software specification are rarely supported
by computer languages, methodologies, or tools [12]. They are usually specified in an informal way and in

* most cases, they are not quantified thus are more difficult to manipulate. Moreover, it is especially hard to
formulate the non-functional aspects of software at early stages of software development. It is not easy to
prototype if the system meets the non-functional requirements until the software development phase, thus
it is even harder to validate the non-functional properties of a software product. Lastly, the non-functional
attributes may conflict or interact with each other. This is called correlation among attributes. When a

3

0
non-functional action is performed on a system adjusting one non-functional attribute, it may have effects
on other non-functional attributes as well. Even though the effect may be unexpected it has to be foreseen
and controlled by the software developers.

Although QoS and its guarantees have been widely used in networking, not many attempts have been
made to incorporate QoS into component-based software systems [6]. As described above, the informal and
ambiguous natural language is not enough for this purpose, and on the other hand, by nature of specification,
a programming language is not appropriate either as it has too much detail involved. Formal specification
can overcome the problem of natural language being too ambiguous and programming language being too
detailed, also formal specification languages have a friendly interface with component based software devel-
opment techniques, thus our goal is to describe the non-functional properties with such a formal language
so as to standardize the software development of systems meeting QoS properties.

3 Specification of QoS in TLG

In UniFrame, Two-Level Grammar (TLG) is used to specify the non-functional properties. TLG is a formal
specification language, originally developed as a specification language for programming language syntax
and semantics, and later used as an executable specification language and as the basis for conversion from
requirements expressed in natural language into formal specifications [4]. It is a formal notation based upon
natural language and the functional, logic, and object-oriented programming paradigms. The combination
of natural language and formalization is unique to TLG and also fits the Unified Meta-component Model
(UMM) for component description [16] used in UniFrame well.

The name "two-level" in TLG comes from the fact that TLG consists of two Context Free Languages
defining the set of type domains and the set of function definitions operating on those domains, respectively.
These grammars may be defined in the context of a class in which case type domains define instance variables
of the class and function definitions define methods of the class, and they interact with each other to achieve
the power of a Turing Machine.

The syntax of TLG class declarations is:

class Identifier-i [extends Identifier-2 ... , Identifier-n].
instance variable and function declarations

end class (Identifier-i].

From this definition, we can see that TLG supports multiple inheritance. The instance variables (also called
as meta-rules) comprising the class definition are declared using domain declarations of the following form:

Identifier-i ... , Identifier-m :: data-object-i; ... ; data-object-n.

where each data-object-i is a combination of domain identifiers, singleton data objects, and lists of data
objects, which taken together as a union form the type of Identifier-1, ... , Identifier-m.

The function signature (referred to as a hyper-rule as well) is defined as follows.

function signature : function-call-i, ... , function-call-n.

where n>1. Function signatures are a combination of NL words and domain identifiers, corresponding to
variables in a logic program. Some of these variables will typically be input variables and some will be
output variables, whose values are instantiated at the conclusion of the function call. Therefore, functions
usually return values through the output variables rather than directly, in which case the direct return value
is considered as a Boolean true or false. true means that control may pass to the next function call, while
false means the rule has failed and an alternative rule should be tried if possible. Alternative rules have
the same format as that given above. If multiple function rules have the same signature, then the multiple. left hand sides may be combined with a ; separator, as in:

function signature :

FunctionCall-11, FunctionCall-12, . FunctionCall-ij;'
FunctionCall-21, FunctionCall-22, . FunctionCall-2k;

FunctionCall-ni, FunctionCall-n2, . FunctionCall-nm.

4

where there are n alternatives, each having a varying number of function calls. Besides Boolean values,
functions may return regular values, usually the result of arithmetic calculations. In this case, only the last
function call in a series should return such a value.

TLG is a suitable specification language to represent non-functional properties for the following reasons.
First of all, TLG has a class hierarchy which corresponds to the way we describe non-functional properties.
This class consists of instance variables and functions, just like the non-functional attributes and non-
functional actions encapsulated together. Thus meta-rules of TLG can be used to represent the non-functional
attributes while hyper-rules of TLG can be used to represent the non-functional actions.

The classes in TLG may inherit from other classes and this hierarchical structure may be used to represent
the decomposability of the non-functional properties as mentioned above so as to take advantage of software
reuse, an important idea in component-based software development. Furthermore, TLG is natural language
like, and thus it is easier to translate from natural language specification to TLG than to other formal
specification languages. TLG is also appropriate for the basis of converting from requirement specifications
into other formal specification languages.

Lastly the specification with TLG has a high level of abstraction and its representation is flexible - not
all the members (variables or functions) have to be quantifiable. For example, to represent the effect of
non-functional actions over the non-functional attributes, especially in the case of correlation, we do not
have to quantify all the attributes or properties. In most cases, we only need to know if an action has effect
on an attribute or not, and how it affects the attribute if it does have effect. So we only need some variables
to describe the relationship above: "no effect," or effects in favor of, or against, respectively. These are just
variables, and do not indicate how much the action affects the attribute.

A simple ATM (Automated Teller Machine) example is used to illustrate our approach of using Two-
Level Grammar to represent non-functional properties. Here is a brief description of the non-functional

* requirements of ATM:

ATM's security property is as follows. The length of the encryption byte should be bigger than 3 and
the allowed attempts has to be smaller than the maximum allowed attempts. If the encryption byte
length is 6 and the maximum allowed attempts is less than 5 then the system is 80% secure. If the account type is
a savings account or the maximum allowed connections of the bank is less than 50 or the delay level is less
than 50 then the maximum allowed attempts is limited to 4.
If the user timeout is between 10000 and 120000 milliseconds we have a good delay level. If the response
time is longer than 30000 milliseconds, the delay level drops down to 40%.

To implement the above requirements specification, four classes are declared : Property, Bank-Capacity,
ATM-Security, and ATM-IDelay. In this simple example, only several non-functional properties are indicated.
For each class, there are non-functional attribute definitions, and non-functional action declarations, es-
pecially the correlated attributes are defined. In general, not all the non-functional attributes need to be
defined exhaustively.

class Property.

Level :: int.
end class.

class Bank-Capacity extends Property.
Maximum-Connections :: Integer.

end class.

class ATM-Security extends Property.

Maximum-AllowedAttempts :: Integer.
EncryptionByteLength :: Integer.
Allowed-Attempts :: Integer.

Account-Type :: String.

check satisfaction :
Encryption-Byte-Length > 3, Allowed-Attempts < MaximumAllowedAttempts.

update level :
EncryptionByteLength = 6,
Allowed-Attempts < 5,
Level := 80.

5

update attributes
Account-Type = "savings", MaximumAllowedAttempts := 4;
Bank-Capacity Maximum-Connections < 50, MaximumAllovedAttempts 4;

ATM-Delay Level < 50, MaximumAllowedAttempts := 4.

end class.

class ATM-Delay extends Property.

Response-Time Integer.

UserTimeout Integer.

check satisfaction

UserTimeout > 10000, UserTimeout < 120000.

update level :
Response-Time > 30000, Level := 40.

end class.

Each property is defined as a TLG class whereas the non-functional attributes are defined as TLG instance
variables such as Level, MaximumConnect ions, MaximuLmAllowedAttempts, Encrypt ionByteLength,
Allowed-Attempts, Account-Type, Response-Time, and UserTimeout. In our example, ATM has Security
and Delay properties and Bank has Capacity property which is used in update attribute operation of
ATM-Security. As the above TLG specification illustrates, all the property classes extend the class Property
which has the instance variable Level. This variable is a representative value for the property, with which. the decomposability of QoS is implemented. For example ATM-Security property has several attributes such
as EncryptionByte-Length and Allowed-Attempts. The value of Level for ATM-Security represents the
overall security level after evaluating all the attributes.

Non-functional actions are represented as methods in the classes. In this example, there is a method
that checks the level of property satisfaction (check satisfaction), that updates the overall level of the
non-functional properties (update level), or that updates the individual attribute according to dynamic
changes of other attributes (update attribute).

Attributes may be updated in a method when some conditions hold. These conditions may include not

only the attributes in the same property of the same class, but also the attributes of other property or even
in other classes. This is how the correlation of non-functional actions are implemented in TLG. For example,
in the ATM-Security class above, if any of the following 3 conditions holds, the maximum number of allowed
attempts (Maximum-AllowedAttempts) is set to be 4: the account type (Account-Type) is a savings account,
or the maximum number of connection allowed by the bank at one time (Maximum-Connections) (which is
an attribute of Bank-Capacity class) is less than 50 connections, or the Level of ATM-Delay is less than 50.

Usually when a non-functional action is performed on a non-functional attribute, the non-functional
attributes may change which, in turn, may trigger other actions to take place. In the ATM example, if some
non-functional actions change Account-Type (which is an attribute of ATM-Security), MaximumConnections
(which is an attribute of Bank-Capacity), or the Level of ATM-Delay not only they themselves will be
updated, but the value of MaximumAllowed-Attempts will be updated as well according to the specification
in the update attributes method in ATM-Security class.

In summary, as illustrated using a simple ATM example, TLG is proven to be a powerful specification
language to formally specify non-functional aspects of a system with a mechanism to abstract the decom-
posability and to express dynamic correlations among properties and attributes.

4 Conversion from Natural Language Description of QoS into
. TLG

First the natural language description of QoS of the system is represented in XML to specify which role each
sentence plays as a non-functional aspect or attribute. This process is carried out by a natural language

6

parser as a preprocessing of the actual translation into TLG. A sample XML representation of ATM example
is shown as follows.

<document>
<c title = "ATM">
<c title = "Security">

<p meta = "satisfaction check">
<s>The length of the encryption byte should be bigger than 3 and the allowed attempts has to be smaller

than the maximum allowed attempts</s>
</p>
<p meta = "level update">
<s>If the encryption byte length is 6 and the allowed attempts is less than 5 then the system is 80%

secure</s>
</p>
<p meta = "attribute update">
<s>If the account type is a savings account or the maximum allowed connections of the bank is less than 50

or the delay level is less than 50 then the maximum allowed attempts is limited to 4</s>

</p>
</C>
<c title = "Delay">
<p meta= "satisfaction check">
<s>If the user timeout is between 10000 and 120000 milliseconds we have a good delay level</s>
</p>

<p meta = "level update">
<s>If the response time is longer than 30000 milliseconds the delay level drops down to 40%h</s>
<Ip>

</c>
<Idocument>

Titles such as Security and Delay indicates the property types whereas the meta information such as
satisfaction check, level update, and attribute update indicates the non-functional actions within
the property.

Given this XML representation of QoS, each sentence of the specification is tokenized and then by using
computational linguistic parsing techniques the system constructs its correct parsing tree. This parsing
tree contains the linguistic information about the sentence such as the part of speech (e.g. noun, verb,
adjective) and the part of sentence (e.g. subject and object) of each word in the sentence. Obtaining this
type of linguistic information is important in the later conversion into TLG because usually the subject of
the sentence is identified as the component name. The verb normally indicates what kind of action this
component takes to affect a specific QoS. Also anaphoric references (pronouns), elliptical compound phrases,
comparative phrases, compound nouns, and relative phrases are handled to allow the input natural language
description to be as less controlled as possible. The same technique has been used to automatically translate
functional requirements documents into a formal specification language as well [10].

Using this linguistic information and the meta information from XML tags, a Knowledge Base is con-
structed. The Knowledge Base is an explicit and declarative representation that is used to represent, main-
tain, and manipulate knowledge about QoS of the system. In addition, the knowledge base has to reflect
the structure of TLG into which the Knowledge Base is translated later. The Knowledge Base of the ATM
example is shown in Figure 2. In the figure, the blank oval indicates OR where as the black ovals indicate AND
relation. The sentences that are grayed out are the conditional statements compared with normal statements.

This Knowledge Base is converted into TLG by identifying the classes, data types, and operations. Once
TLG specifications are obtained, the specifications are translated into VDM++ (we refer the readers to [4]
for details). Using the VDM++ tool kit [9] the specifications can be in turn translated into a high level
language such as Java or C++ or into a model in UML (Figure 3).

In summary, the QoS description in NL is represented in XML to specify the meta information and the
Knowledge Base with a systematic structure can be used to capture this meta information as well as the. linguistic information to be used to convert the description into TLG.

7

sa a to ch _~ 4Length of encrypt ionb by ebe bigge r than 3]{

FAllowed attents f be smaller than . Maximum allowed attempts

No-fntina spcsiation a te aneiptant fabs ntnal a c

veodmet Fllowed reree o o f ayl e less tha n 5t

especallyin d Stcribted co ponet-aed sytm s.Teseiiain a ob xrsie nuhtoel

the useul nonfunctinal spcificaions wilecbe ng able to deascribes acompeu eopoaiiyantyai

correlation amongton the nobfncioa properties.n50

ATM ~~~~update attr utesb =S = 0 _;
McatmuT allowed atteatsl lanuae i t r l it 4T

a nauraUser ligueout I bf between TG i 00 and 120000 milliseconds u i•satisfaction check ..

Delay

aip Response time I be longer than 30000 mpnlisecos a
I pdate level :,•D~~ I dropdo•0/

Figure 2: Knowledge Base for ATM example.

O 5 Conclusion

Non-functional aspects of the software specification are as important as functional aspects in software de-
velopment. Formal representation ot requntsocuments if sgreat contribution to software engineering
especially in distributed component-based systems. The specification has to be expressive enough to cover all
the useful non-functional specifications while being able to describe complex decomposability and dynamic
correlations among the non-functional properties.

In our research first the non-functional specifications are described informally in natural language ac-
cording to a QoS parameter catalog. Then this specification in natural language is translated into TLG,
a natural language like formal specification language. TLG is used to formally represent non-functional
aspects of requirements for rapid prototyping and optimal distribution of components. We are performing

evaluations of the system for various requirements documents. It is expected that tie dechnology we ase
developing will be applicable to these requirements documents. If successful, this will provide a very useful
tool to assist software engineers in moving from the requirements document to the formal specification.

OMG's Model Driven Architecture (MDA) [11] includes standards that enable the use of generative
techniques for construction of interoperability bridges between platform technologies. It will be a promising
and useful approach to combine Model Driven Architecture and formal methods in representing the non-
functional aspects of software specifications. QoS issues in MDA have been explored in [5]. Our future
work is to express the constraints in Object Constraint Language (OCL), and to automatically generate the
OCL representation from the TLG representation of the non-functional aspects of software specification, and
implement the representation within MDA. At the same time, we will continue developing the system to
improve system usability and robustness with respect to its coverage of requirements documents.

References

[1] ASTER. Software Architectures for Distributed Systems (ASTER). Technical report,
(http: //www-rocq. inria. fr/solidor/work/aster. html), 2000.

[2] D. Bjorner and C. B. Jones. The Vienna Development Method: The Meta-Language. Springer-Verlag,
1978.

8

• • ~~~Propertyit _,_

J(frm Generated class..

AT-_Delay -ABel:yankCpacity
(from Generated classes) (from Generated classes)

>User_ Timeout:int dAMaxioumTCoesections ift
MiRespoAsetTepe : it

tq~datel~evel(J -nDeayk Capacity
AfcheckSatisfctiono ATIhSecutity

N..(from Generated classes)

q)Atfmtent5 int

FiAccourtType :seq of char
[4M]imwn BAttemmas :int O
Lnu .a n. on. Byte Length: n .t

*%pdatel~evelo
*qdateAtri-huteso
AfcheckSatisfactjono

Figure 3: UML for ATM.

[3] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maier. Extensible Markup Language (XML) 1.0
(Second Edition). Technical report, W3C (http: //www . w3c . org/xinl), 2000.

[4] B. R. Bryant and B.-S. Lee. Two-Level Grammar as an Object-Oriented Requirements Specification
Language. Proc. 35th Hawaii Int. Conf. System Sciences, Jan. 2002.

[5] C. C. Burt, B. R. Bryant, R. R. Raje, A. Olson, and M. Auguston. Quality of Service Issues Related
to Transforming Platform Indepent Models to Platform Specific Models. Proc. EDOC 2002, 6th IEEE
Int. Enterprise Distributed Object Computing Conf. (to appear), 2002.

[6] L. A. Campbell and B. H. C. Cheng. Integrating informal and formal approaches to requirements
modeling and analysis. Proc. IEEE International Symposium on Requirements Engineering (RE01),
pages 294-295, 2001.

[7] E. H. Diirr and J. van Katwijk. VDM++ - A Formal Specification Language for Object-Oriented
Designs. Proc. TOOLS USA '92, 1992 Technology of Object-Oriented Languages and Systems USA
Conf., pages 63-278, 1992.

[8] IFAD. The VDM++ Toolbox User Manual. Technical report, IFAD (http://www. ifad.dk), 2000.

[9] IFAD. VDMTools - Java/C++ Code Generator. Technical report, IFAD, 2000.

[10] B.-S. Lee and B. R. Bryant. Automated Conversion from Requirements Documentation to an Object-
Oriented Formal Specification Language. Proc. ACM 2002 Symposium on Applied Computing, pages
932-936, 2002.

[11] OMG. Model Driven Architecture (MDA). Technical report, (http://www. omg. org/mda/), 2000.

[12] P. Pal, J. Loyall, and R. Schantz et al. Using QDL to Specify QoS Aware Distributed (QuO) Applica-
tion Configuration. Proc. 3rd IEEE International Symposium on Object-Oriented Real-time Distributed
Computing, 2000.

[13] Qedo. QoS Enabled Distributed Objects. Technical report, (http://qedo.berlios.de).

* [14] T. Quatrani. Visual Modeling with Rational Rose 2000 and UML. Addison-Wesley, 2000.

[15] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson, and C. Burt. A Quality of Service-based
Framework for Creating Distributed Heterogeneous Software Components. to appear in Concurrency
and Computation: Practice and Experience, 2002.

9

0
[16] R. R. Raje, B. R. Bryant, M. Auguston, A. M. Olson, and C. C. Burt. A Unified Approach for the

Integration of Distributed Heterogeneous Software Components. Proc. 2001 Monterey Workshop on
Engineering Automation for Software Intensive System Integration, pages 109-119, 2001.

0

0

10

0

Towards Fully Automatic Execution Monitoring

Clinton Jeffery, Mikhail Auguston, Scott Underwood

Department of Computer Science, New Mexico State University
ijeffery, mikau, sunderwol@cs.nmsu.edu

Abstract. UFO is a new application framework in which programs written in
FORMAN, a declarative assertion language, are compiled into execution monitors that
run on a virtual machine with extensive monitoring capabilities provided by the Alamo
monitor architecture. FORMAN provides an event trace model in which precedence and
inclusion relations define a DAG structure that abstracts execution behavior. Compiling
FORMAN assertions into hybrid run-time/post-mortem monitors allows substantial
speed and size improvements over post-mortem analyzers. The UFO compiler generates
code that computes the minimal projection of the DAG necessary for a given set of
assertions. UFO enables fully automatic execution monitoring of real programs. The
approach is non-intrusive with respect to program source code and provides a high level
of abstraction for monitoring and debugging activities. The ability to compile suites of
debugging rules into efficient monitors, and apply them generically to different
programs, enables long-overdue breakthroughs in program debugging.

0 1. Motivation
Debugging is one of the most challenging and least developed areas of software

engineering. A special issue of Communications of the ACM characterized the
current state of debugging tools as a "Debugging scandal" [1]. According to the
classic "Brook's rule" [2] more than 50% of all time and effort in a software project is
spent in testing and debugging activities. Typical activities include detection and
removal of errors, profiling, and performance tuning.

Debugging activities include queries regarding many aspects of target program
behavior: sequences of steps performed, histories of variable values, function call
hierarchies, checking of pre- and post-conditions at specific points, and validating
other assertions about program execution. Performance testing and debugging
involves a variety of profiles and time measurements. Visualization is another
common debugging activity that may help locate logic or performance problems.

There is an urgent need for tools that automate the primary, labor-intensive tasks
of debugging, but progress has been slow. Debugging automation has its own system
of ideas and domain-specific programming activities. Support for these concepts and
activities is essential in order to move debugging automation forward.

We are building automatic debugging tools based on precise program execution
behavior models that enable us to employ a systematic approach. Our program
behavior models are based on events and event traces [3][4][5]. Debugging
automation refers to a computation over an event trace. Program execution monitors
are programs that load and execute a target program, obtain events at run-time, and
perform computations over the event trace. Computations are performed during
execution, post-mortem, or in any mixture of both times.

0

Any detectable action performed during a target program's run time is an event.
For instance, expression evaluations, statement executions, and procedure calls are all
examples of events. An event has a beginning, an end, and some duration; it occupies
a time interval during program execution. This leads to the introduction of two basic
binary relations on events: partial ordering and inclusion. Those relations are
determined by target language syntax and semantics, e.g. two statement execution
events may be ordered, or an expression evaluation event may occur inside a
statement execution event. The set of events produced at run time, together with
ordering and inclusion relations, is called an event trace and represents a model of
program behavior. An event trace forms an acyclic directed graph (DAG) with two
types of edges corresponding to the basic relations.

Our previous work included the FORMAN assertion language [3] and the Alamo
program execution monitoring architecture [6]. FORMAN takes a top-down
approach, introducing a domain-specific syntax for expressing bug manifestations and
other behavior of interest, while Alamo takes a more bottom-up, implementation-
driven approach, providing runtime system support for the development of monitors
in which efficiency and scalability to real programs are primary concerns. Alamo's
efficient source-level access and control over monitored programs has been integrated
into a production virtual machine; in the absence of such support, monitoring would
require extensive low-level instrumentation and control mechanisms.

The language UFO (Unicon-FORMAN) integrates the experience accumulated in
these previous projects to provide a complete solution for development of an
extensive suite of automatic debugging tools. UFO is an implementation of
FORMAN for debugging programs written in the Unicon and Icon programming
languages [7][8]. Previous FORMAN implementations worked on subsets of Pascal,
and C languages and used post-mortem event trace processing methods that limited
their applicability. In contrast, UFO uses the Alamo monitoring architecture that
pervades the Unicon virtual machine to support debugging real programs at run time.

2. Unicon and Alamo
The Unicon language and the Alamo monitoring architecture provide the underlying
research framework for the implementation of UFO. Unicon is an imperative, goal-
directed, object-oriented superset of the Icon programming language. Unicon's syntax
is similar to Pascal or Java, while its semantics are higher level, featuring built-in
backtracking and heterogeneous data structures and string scanning facilities. Icon has
influenced many scripting languages such as Python. Unicon is Icon's direct
descendant, derived from Icon's implementation. It runs regular Icon programs and
extends Icon's reach with object-orientation and packages, as well as a much richer
system interface with high level graphics, networking, and database facilities.

The reference implementation of Unicon is a virtual machine. Virtual machines
(VM) are attractive to language implementers, enhancing portability and allowing
simpler implementation of very high level language features such as backtracking.

VMs are also ideal for developing debugging tools. VMs provide an appropriate
level of abstraction for developing behavior models to describe program executions in
a processor independent manner, as illustrated by the JPAX tool [9]. VMs also
provide easy access to program state and control flow, the information most needed

for debugging activities. Automatic instrumentation on multiple semantic levels is
greatly simplified via the use of a VM. This potential was exploited in the Unicon
VM by a framework that implements the Alamo monitoring architecture. Event
instrumentation and processing support are an integral part of the VM.

The Alamo Unicon framework is summarized in Figure 1. Execution monitors
(EM) and the target program (TP) execute as (sets of) coroutines with separate stacks
and heaps inside a common VM. The VM is instrumented with approximately 150
kinds of atomic events, each one reporting a <code,value> pair. EMs specify
categories of events by supplying an event mask when they activate the TP by
coroutine switch. The TP executes up to an event of interest.

Unicon Virtual Machine state access functions

m
a

TP s EM
k

VM instrumentation

Fig. 1. Alamo architecture within the Unicon VM.

The event mask is used by the VM for instrumentation selection and control. Event
reports during TP execution are coroutine context switches from the VM runtime
system back to the execution monitor. In addition to the <code,value> reported for the
event, the EM can directly access arbitrary variable values and state information from
the TP via state access functions. Monitors are written independently from the target
program, and can be applied to any target program without recompiling the monitor
or target program. Monitors dynamically load target programs, and can easily query
the state of arbitrary variables at each event report. Multiple monitors can monitor a
program execution, under the direction of a monitor coordinator.

Alamo's goal was to reduce the difficulty of writing execution monitors to be just
as easy as writing other types of application programs. UFO moves beyond Alamo to
efficiently support FORMAN's more ambitious goal of reducing the difficulty of
writing automatic debuggers to the task of specifying generic assertions about
program behavior. UFO's FORMAN language is described in Section 4 below, but
first it is necessary to present the underlying behavior model.

3. An Event Grammar for Unicon
Event grammars provide a model of program run time behavior. Monitors do not have
to parse events using this grammar, since event detection is part of VM and UFO
runtime system functionality. Monitors implement computations over event traces
supplied by the VM. An event is an abstraction of a detectable action performed at
run time and has an event type and various attributes associated with it. The following
description in fact provides a "lightweight" semantics of the Unicon programming
language tailored for specification of debugging activities. An event corresponds to

some specific action of interest performed during program execution. Event type is an
important part of the behavior model.

Universal attributes are found in every event. They frequently are used to narrow
assertions down to a particular domain (function, variable, value) of interest. Some of
these attributes are much easier to obtain than others, and affect the optimizations that
can be performed when generating monitor code; see Section 5 for details.

source-text: in a canonical form
line num, colnum: source text locations
time at end, time at_begin, duration: timing attributes
eval at begin (Unicon-expr),
eval at end (Unicon-expr): runtime access to the program states
prevpath, followingpath: set of events before/after this event

Event types and their type-specific attributes are summarized in the table below.

Event Type _Description Type Specific Attributes
prog ex whole program execution
expr eval expression evaluation value, operator, type, failurep
func call function call func name, paramlist
input, output ./0 file
variable variable reference
literal reference to a constant value
lhp lefthand part, assignment address
rhp righthand part, assignment
clause then-, else-, or case branch execution
test test evaluation
iteration loop iteration

Event types form a hierarchy, shown in Figure 2. Subtypes inherit attributes from
the parent type. Expression evaluation is the central action during Unicon program
execution, this explains why the expr eval event is on the top of the hierarchy.

expr_eval
Ii iI I I I I

clause iteration test lhp funccall rhp variable param literal
I I I-

input output

Fig 2. Event Type Inheritance Hierarchy

The UFO event grammar for Unicon is a set of axioms describing the structure of
event traces with respect to the two basic relations: inclusion and precedence. The
grammar is one possible abstraction of Unicon semantics; other event grammars with
far more (or less) detail might be used. The event grammar limits what kinds of bugs
can be detected, so some detail is useful. The grammar uses the following notation:

Notation Meaning
A:: (B C B precedes A, A includes B and C
A* Zero or more A's under precedence
A+ One or more A's under precedence
A B Either A or B; alternative
A? A is optional

SA , B } Set; A and B have no precedence
x : A Let x denote event A

progex:: (expr-eval *)
expreval:: ((expr eval) unary op

(expreval expreval) binary op
(expreval+) I
(test clause) I conditional / case expressions
(iteration *) loops
({ lhp, rhp}) assignment

lhp and rhp are not ordered, beginning of
lhp precedes rhp, and end of lhp follows rhp

iteration:: (test expr eval*) I (expr eval* test) I (expr eval *)

Execution of a Unicon program produces a set of events (an event trace) organized
by precedence and inclusion into a DAG. The structure of the event trace (event
types, precedence and inclusion of events) is constrained by the event grammar
axioms above. The event trace models Unicon program behavior and provides a basis
to define different kinds of debugging activities (assertion checking, debugging
queries, profiles, debugging rules, behavior visualization) as appropriate computations
over the event traces.

4. FORMAN

Alamo allows efficient monitors to be constructed in Unicon, but using a special-
purpose language such as FORMAN, with the rich behavior model described in the
preceding section, has compelling advantages. On a basic level, for example, it is
convenient to refer to target program variables directly instead of through a library
call. For example, in FORMAN we may refer to target program variable x, while in
the Unicon monitor it is referenced as variable("x", &eventsource). UFO rules are
up to an order of magnitude smaller (in terms of lines of source code) than the
equivalent imperative monitors written in Unicon, depending on the type of
quantifiers and aggregate operations used in the FORMAN rule.

More important than such conveniences are FORMAN's control structures that
directly support dynamic analysis. FORMAN supports computations over event traces
centered around event patterns and aggregate operations over events. The simplest
event pattern consists of a single event type and matches successfully an event of this
type or an event of a subtype of this type. Event patterns may include event attributes

and other event patterns to specify the context of an event under consideration. For
example, the event pattern

E: expr.eval & E.operator

matches an event of assignment. Temporary variable E provides an access to the
events under consideration within the pattern.

The following example demonstrates the use of an aggregate operation.

CARD[A: funccall & A.funcname == "read" FROM progex]

yields a number of events satisfying the given event pattern, collected from the whole
execution history. Expression [...] is a list constructor and CARD is an abbreviation
for a reduction of'+' operation over the more general list constructor:

+/[A:funccall& A. funcname=="read" FROM prog-ex APPLY 1]

Quantifiers are introduced as abbreviations for reductions of Boolean operations
OR and AND. For instance,

FOREACH Pattern FROM eventset Booleanexpr

is an abbreviation for

AND/[Pattern FROM eventset APPLY Boolean-expr]

Debugging rules in FORMAN usually have the form:
Quantified_ expression

WHEN SUCCEEDS SAY-clauses
WHEN FAILS SAY-clauses

The Quantified expression is optional and defaults to TRUE. The execution of
FORMAN programs relies on the Unicon monitors embedded in a VM environment.
Section 5 below describes the architecture of the UFO compiler and runtime system,
which translates FORMAN to Unicon VM monitor code.

The following examples illustrate additional features of FORMAN as needed.

Application-Specific Analyses

This section presents formalizations of typical debugging rules. UFO supports and
improves upon the most common application-specific debugging techniques. For
example, UFO supports traditional precondition checking, or print statement
insertion, without any modification of the target program source code. This is
especially valuable when the precondition check or print statement is needed in not
just one location, but instead in many locations scattered throughout the code.

Example #1: Tracing. Probably the most common debugging method is to insert
output statements to generate trace files, log files, and so forth. This allows for
subsequent human analysis, and while it has its limitations, it will remain a common
technique. It is possible to request evaluation of arbitrary Unicon expressions at the
beginning or at the end of events. The VM evaluates these expressions at the indicated
time moments, allowing dynamic instrumentation of the Unicon program, whether to
print some values, or to call a visualization library subroutine.

FOREACH A: funccall & A.func-name == "myfunc" FROM progex
A.valueatbegin(write("entering myfunc, value of X is:",X))

AND
A.value at end(write("leaving myfunc, value of X is:", X))

This debugging rule causes calls to write () to be evaluated at selected points at
run time, just before and after each occurrence of event A.

Example #2: Profiling. A myriad of tools are based on a premise of accumulating
the number of times a behavior occurs, or the amount of time spent in a particular
activity or section of code. The following debugging rule illustrates such
computations over the event trace.

SAY("Total number of read() statements:
CARD[r: input & r.filename == "xx.in" FROM progex]
"Elapsed time for read operations is: .
SUM [r: input & r.filename == "xx.in" FROM progex

APPLY r.duration])

Example #3: Pre- and Post- Conditions. Typical use of assertions includes
checking pre- and post-conditions of function calls.

FOREACH A:func call & A.funcname=="sqrt" FROM progex
A.paramlist[f] >=0 AND
abs(A.value*A.value-A.paramlist[l]) < epsilon

WHEN FAILS SAY("bad sqrt(" A.pararrlist[l] ") yields " A.value)

Generic Bug Descriptions

Another interesting prospect is the development of a suite of generic automated
debugging tools that can be used on any Unicon program. UFO provides a level of
abstraction sufficient for specifying typical bugs and debugging rules.

Example #4: Detecting Use of Un-initialized Variables. Although reading an un-
initialized variable is permissible in Unicon, this practice often leads to errors.
Therefore, in this debugging rule all variables within the target program are checked
to ensure that they are initialized before they are used.

FOREACH V: variable FROM progex
FIND D: lhp FROM V.prev_path D.source text == V.source text

WHEN FAILS SAY(" uninitialized variable V.source_text)

Example #5: Empty Pops. Removing an element from an empty list is
representative of many expressions that fail silently in Unicon. While this can be
convenient, it can also be a source of difficult to detect logic errors. This assertion
assures that items are not removed from empty lists.

FOREACH a:funccall & a.func_name=="pop" &
a.value at begin(*a.paramlist[l]==0)

SAY("Popping from empty list at event " a)

5. Implementation Issues

The most important of implementation issues is the translation model by which
FORMAN rules are compiled into Unicon monitors. Rules are written as if they have
the complete post-mortem event trace available for processing. This generality is
powerful; however the majority of assertions can be compiled into monitors that
execute entirely at runtime. Runtime monitoring is the key to practical
implementation. For assertions that require post-mortem analysis, the UFO runtime
system computes a projection of the execution DAG needed to perform the analysis.

The UFO translation model categorizes each rule as either "runtime", "post-
mortem", or "hybrid", denoting the amount of computations that can be performed at
runtime. Runtime and hybrid categories are determined by constraints on FORMAN
quantifier prefixes and result in more efficient code. Nested quantifiers and aggregate
operations generally require post-mortem operation.

Translation Examples

Each FORMAN statement is translated into a combination of initialization, run-time,
and post-mortem code. Monitors are executed as coroutines with the Unicon target
program, as explained in Section 2. The following examples give a flavor of the run
time architecture of monitors generated from the UFO high level rules.

Implementation of Example #1. A lone FOREACH quantifier is typical of many
UFO debugging actions and allows computation to be performed entirely at runtime.
The events being counted and values being accumulated determine an event mask in
the initialization code that defines the Alamo events that will be monitored. The
monitor's event processing loop implements a filter based on procedure name within
an if-expression. The Unicon code blocks containing writeo expressions are inserted
directly into the event loop for the relevant events. The complete monitor is:

$include "evdefs.icn"
link evinit
procedure main(av)

Evlnit(av) I stop("can't monitor ", av[l])
mask := E Pcall ++ EPret ++ EPfail ++ EPrem
while EvGet(mask) do {

if &eventcode == E Pcall & &eventvalue === myfunc then
write("entering my_func, value of X is:", X) # BEFORE

if &eventcode == (EPret I EPfail I EPrem) &
&eventvalue=== myfunc then

write("leaving myfunc, value of X is:", X) # AFTER

end

Implementation of Example #2. Another typical situation involves an aggregate
operation and selection of events according to a given pattern. The SAY expression is
implemented by a call to writeo; it must be performed post-mortem since it uses
parameters whose values are constructed during the entire program execution. CARD
denotes a counter, while SUM denotes an accumulator +/; both require a variable that
is initialized to zero. The event subtypes and constraints are used to generate

additional conditional code in the body of the event processing loop. Lastly, some
attributes such as r.duration require additional events and measurements besides the
initial triggering event. In the case of r.duration, a time measurement between the
function call and its return is needed.

$include "evdefs.icn"
link evinit
procedure main(av)

EvInit(av) I stop("can't monitor ", av[l])
cardreads := sumreadtime := 0
mask := cset(E Fcall)
while EvGet(mask) do f

count CARD of r:input...
if &eventcode == E Fcall & &eventvalue === (readlreads) then

cardreads +:= 1
add SUM of r.duration for r:input
if &eventcode == E Fcall & &eventvalue===(readlreads) then f

thiscall := &time
EvGet(EFfail++EFret)
sumreadtime +:= &time - thiscall

Translation of SAY
write("Total number of read() statements: ", cardreads, '\n",

"Elapsed time for read operations is: ", sumreadtime)
end

Basic Generation Templates

The preceding handwritten example monitors use a single main loop that implements
traditional event-driven processing. Monitors generated by the UFO compiler reduce
complex assertions to this same single event loop. Keeping event detection in a single
loop allows uniform processing of multiple event types used by multiple monitors.
The code generated by the UFO compiler integrates event detection, attribute
collection, and aggregate operation accumulation in the main event loop.

Assertions in UFO that use nested quantifiers entail two nested loops. Code
generation flattens this loop structure, and postpones assertion processing until
required information is available. A hybrid code generation strategy performs runtime
processing whenever possible, delaying analyses until post-mortem time when
necessary. Different assertions require different degrees of trace projection storage;
code responsible for trace projection collection is also arranged within the main loop.

Each UFO rule falls in one of the following categories which determines its code
generation template in the current implementation. We have not found a use for
assertions requiring more than two nested quantifiers.

Type FORMAN template Pseudocode
Single quantifier. Rule applies to See examples in Section 4.1.

I whole trace(progex); evaluates at
runtime.

S

Type FORMAN template Pseudocode
Nested quantifiers of the form Main Loop
Quantifier A: PatternA Maintain stack of nested A

Quantifier B: PatternB FROM A events
Body Accumulate events B in a B-list

This requires accumulation of a trace If end of event A
I projection for B-events and causes a Loop over B-list

mild overhead at runtime. Do Body
Endif

If stack of A is empty
Destroy B-list

End of Main Loop
Nested quantifiers of the form Main Loop

Maintain stack of nested A
Quantifier A: Pattern A events

Quantifier B: PatternB Accumulate events B in a B-list
FROM A .prevpath If end of event A

Body Loop over B-list
Accumulates a trace projection for B- If B precedes A

events and may cause a heavy Do Body

overhead at runtime. The B-list can End f

not be deleted till the end of session.

Nested quantifiers of the form Main Loop
Accumulate events A in A-list

Quantifier A: Pattern A Accumulate events B in B-list
Quantifier B: PatternB End of Main Loop

IV FROM A.followingpath # Postmortem Loop
(or FROM progex) Loop over A-list

Body Loop over B-list
Accumulates trace projections for Do Body

both A and B events and causes a End of Postmortem Loop

I__ Ivery heavy overhead at runtime.

Compiler-Based Optimizations

The advantage of the UFO approach is the combination of an optimizing compiler for
monitoring code with efficient run-time event detection and reporting. Since we know
at compile time all necessary event types and attributes required for a given UFO
program, the generated monitor is very selective about the behavior that it observes.

For certain UFO constructs, such as nested quantifiers, monitors accumulate a
sizable projection of the complete event trace and postpone corresponding
computations until required information is available. The use of the previouspath
and following~path attributes in UFO assertions facilitates this kind of optimization.

For further optimization, especially in the case of programs containing a
significant number of modules, the following FORMAN construct limits event
processing to events generated within the bodies of functions Fl, F2, ... , Fn.

WITHIN Fl, F2, ... , Fn DO
Rules

END WITHIN

s

S

This provides for monitoring only selected segments of the event trace.
Unicon expressions included in the value atbegin and value at end attributes are

evaluated at run time. Some other optimizations implemented in this version are:
"* only attributes used in the UFO rule are collected in the generated monitor;
"* an efficient mechanism for event trace projection management, which

disposes from the stored trace projection those events that will not be used
after a certain time (for example, see Category II);

"* event types and context conditions are used to filter events for the processing.
UFO's goal of practical application to real-sized programs has motivated several

improvements to the already-carefully-tuned Alamo instrumentation of the Unicon
VM. We are working on additional optimizations.

6. Results of Sample Assertion Execution

Table 1 gives results from executing rules written in UFO on a sample target program,
a 1,100 line version of egrep. Tests were run on a 700 MHz Solaris machine with
512MB of RAM. The results reported are number of events generated by the VM and
execution time averaged over several runs. Execution time is reported as
minutes:seconds.tenths. The second row contains the time for program execution
without monitoring. Each program/input file combination was monitored by 8
different assertions corresponding to the basic generation templates.

Cases 1-4 are examples of a Category I template. Case 5 is a Category II rule.
Case 6 is a Category III rule. It uses PREVPATH and accumulates a trace projection
over part of the program execution. Cases 7 and 8 contain nested quantifiers that
belong to Category IV. These assertions require the accumulation of two trace
projections over the entire program execution, and complete post-mortem processing.
Case 9 is composed of all the previous assertions to yield a monitor that combines
multiple assertions on a single execution of the target program.

Table 1. Results for igrep.icn.

Input Size (lines) 4000 16000 64000

No monitoring 0.5 1.6 6.4

Events Time Events Time Events Time

Case 1 184208 4.1 736208 16.2 2944208 1:04.9

Case2 284123 4.6 1136123 18.1 4544123 1:12.9

Case 3 184208 3.4 736208 13.5 2944208 54.0

Case 4 184208 3.5 736208 13.6 2944208 54.0

Case 5 276306 6.3 1104306 28.0 4416306 2:09.3

Case 6 276306 6.5 1104306 28.4 4416306 2:11.8

Case7 276306 6.5 1104306 29.1 4416306 2:11.3

Case8 276306 6.5 1104306 29.4 4416306 2:12.6

Case 9 340306 45.9 1360306 3:57.8 5440306 20:38.6

S

S

The results depicted in this table allow several observations. Average monitoring
speeds on simple assertions in the test environment were in the range of 2-3 million
events per minute. Monitoring realistic assertions on real-size programs with real-size
input data is feasible with this system. Most assertions impose about one order of
magnitude execution slowdown compared with the unmonitored program execution.

The execution time required by the combination of all assertions (Case 9) is longer
than the sums of separate monitor executions. Combined assertion executions have
greater memory requirements in the current implementation, because separately
collected trace projections compete for available cache and virtual memory resources.
Multi-assertion optimizations are not yet implemented in the current UFO compiler.

7. Related Work

What follows is a very brief survey of basic ideas known in Debugging Automation to
provide the background for the approach advocated in this paper.

The Event Based Behavioral Abstraction (EBBA) [10] characterizes the behavior
of programs in terms of primitive and composite events. Context conditions involving
event attributes are used to distinguish events. EBBA defines two higher-level means
for modeling system behavior -- clustering and filtering. Clustering is used to express
behavior as composite events, i.e. aggregates of previously defined events. Filtering
serves to eliminate from consideration events, which are not relevant to the model
being investigated. Both event recognition and filtering can be performed at run-time.

Event-based debuggers for the C programming language built on top of GDB
include Dalek [11] and COCA [12]. Dalek supports user-defined events that typically
are points within a program execution trace. A target program has to be manually
instrumented in order to collect values of event attributes. Composite events can be
recognized at run-time as collections of primitive events. COCA uses GDB for tracing
and PROLOG for the execution of debugging queries. It provides an event grammar
for C and event patterns based on attributes for event search. The query language is
designed around special primitives built into the PROLOG query evaluator.

Assertion languages provide another approach to debugging automation. Boolean
expressions are attached to points in the target program, like the assert() macro in C.
[13] advocates a practical approach to programming with assertions for the C
language, and demonstrates that even local assertions associated with particular points
within the program may be extremely useful for program debugging

The ANNA [14] annotation language for the Ada language supports assertions on
variable and type declarations. The TSL [15], [16] annotation language for Ada uses
events to describe the behavior of Tasks. Patterns can be written which involve
parameter values of Task entry calls. Assertions are written in Ada using a number of
special pre-defined predicates. Assertion-checking is performed at run-time. RAPIDE
[17] provides an event-based assertion language for software architecture description.
Temporal Rover is a commercial tool for dynamic analysis based on temporal logics
[18]. The DUEL [19] debugging language introduces expressions for C aggregate
data exploration, for both assertions and queries.

S

Algorithmic debugging was introduced in [20] for the Prolog language. In [21] and
[22] this paradigm is applied to a subset of PASCAL. The debugger executes the
program and builds a trace execution tree at the procedure level while saving some
useful trace information such as procedure names and input/output parameter values.
The debugger traverses the execution tree, asking the user about the intended behavior
of each procedure. The search finally ends and a bug is localized within a procedure p
when one of the following holds: procedure p contains no procedure calls, or all
procedure calls performed from the body of procedure p fulfill the user's expectations.
The notion of computation over execution trace introduced in FORMAN is a
generalization of Algorithmic Debugging and is a convenient basis for describing
such generic debugging strategies.

PMMS [23] is a high level program monitoring and measuring system. This system
works by receiving queries from the user about target programs written in the AP5
high level programming language. PMMS instruments the source code of the target
program in order to gather data necessary to answer the posed questions. This data is
collected during run time by the monitoring facilities of PMMS and stored in a
database for subsequent analysis. Their domain specific query language is similar to
FORMAN but tailored for database-style query processing.

JPAX [9], the Java Path Explorer, provides a means to check execution events
within a program based on a user provided specification written in Maude, a high
level logic language. Like UFO, JPAX supports monitoring based on a VM (JVM).
JPAX supports both black box (based on automatic byte-code instrumentation) and
white box (based on hand instrumentation) runtime verification.

Dynascope [24] is a system for directing programs written in vanilla C. A director
monitors and controls the actions of the program, while an interpreter controls the
flow of event streams to and from the director in addition to interpreting the program.
Dynascope can test and debug programs without altering their source code.

YODA [25] uses a preprocessor to attach statements to a target Ada program.
These statements activate a monitor creates a trace database and a symbol table to aid
in debugging. The trace database will contain the program's history regarding variable
declaration and use, task synchronization, and change in task status. Prolog queries
can be issued by the user in order to confirm or reject hypotheses about program
behavior. YODA represents a classical post-mortem trace processing paradigm.

8. Conclusions and Future Work

The rising popularity of virtual machine architectures enables dramatic improvements
in automatic debugging. These improvements will only occur if debugging is one of
the objectives of the VM design, e.g. as in the case of.net [26].

The architecture employed in UFO could be adapted for a broad class of languages
such as those supported by the Java VM or the .net VM. Our approach to debugging
automation uniformly represents many types of debugging-related activities as
computations over traces, including assertion checking, profiling and performance
measurements, and the detection of typical errors. We have integrated event trace

0

computations into a monitoring architecture based on a VM. Preliminary experiments
demonstrate that this architecture is scalable to real-world programs.

One of our next steps is to build a repository of formalized knowledge about
typical bugs in the form of UFO rules, and gather experience by applying this
collection of assertions to additional real-world applications. There remain many
optimizations that will improve the monitor code generated by the UFO compiler, for
example, merging common code used by multiple assertions in a single monitor, and
generating specialized VMs adjusted to the generated monitor.

Acknowledgements
This work has been supported in part by U.S. Office of Naval Research Grant #
N00014-01-1-0746, by U.S. Army Research Office Grant # 40473--MA-SP, by the
NSF Grant # EIA 02-20590, and by the National Library of Medicine.

References

[1] Communications of the ACM, Vol.4, 1997.
[2] F. Brooks, The Mythical Man-Month. Addison-Wesley, Reading, MA, 1975.
[3] Mikhail Auguston, Program Behavior Model Based on Event Grammar and its

Application for Debugging Automation, Proceedings of the 2nd Int'l Workshop on
Automated and Algorithmic Debugging, Saint-Malo, France, May 1995, pp. 277-291.

[4] M. Auguston, A. Gates, M. Lujan, "Defining a Program Behavior Model for Dynamic
Analyzers", in Proceedings of the 9th International Conference on Software Engineering
and Knowledge Engineering, SEKE'97, Madrid, Spain, June 1997, pp. 257-262.

[5] M. Auguston, "Lightweight semantics models for program testing and debugging
automation", Proceedings of the 7th Monterey Workshop, June 2000, pp.2 3-3 1.

[6] Clinton L. Jeffery, Program Monitoring and Visualization: an Exploratory Approach.
Springer, New York, 1999.

[7] Clinton Jeffery, Shamim Mohamed, Ray Pereda, and Robert Parlett, "Programming with
Unicon", http://unicon.sourceforge.net.

[8] Ralph E. Griswold and Madge T. Griswold, The Icon Programming Language, 3rd edition.
Peer to Peer Communications, San Jose, 1997.

[9] K. Havelund, S. Johnson, G. Rosu. "Specification and Error Pattern Based Program
Monitoring", ESA Workshop on On-Board Autonomy, Noordwijk, Holland, Oct. 2001.

[10] P. C. Bates, J. C. Wileden, "High-Level Debugging of Distributed Systems: The Behav-
ioral Abstraction Approach", Journal of Systems and Software 3, 1983, pp. 255-264.

[11] R. Olsson, R. Crawford, W. Wilson, "A Dataflow Approach to Event-based Debugging",
Software -- Practice and Experience, Vol.21(2), February 1991, pp. 19-31.

[12] M. Ducasse, "COCA: An automated debugger for C", in Proceedings of the 1999
International Conference on Software Engineering, Los Angeles, 1999, pp. 504-513.

[13] D. Rosenblum, "A Practical Approach to Programming with Assertions", IEEE
Transactions on Software Engineering, Vol. 21, No 1, January 1995, pp. 19-31.

[14] D. C. Luckham, S. Sankar, S. Takahashi, "Two-Dimensional Pinpointing: Debugging with
Formal Specifications", IEEE Software, Vol. 8, No 1, January 1991, pp.7 4 -84 .

[15] D. C. Luckham, D. Bryan, W. Mann, S. Meldal, D. P. Helmbold, "An Introduction to Task
Sequencing Language, TSL version 1.5", Stanford University, Feb. 1990, pp. 1-68.

[16] D. Rosenblum, "Specifying Concurrent Systems with TSL", IEEE Software, Vol. 8, No 3,
May 1991, 52-61.

[17] D. Luckham, J. Vera, "An Event-Based Architecture Definition Language", IEEE
Transactions on Software Engineering, Vol.21, No. 9, 1995, pp. 717-734.

[18] D. Drusinsky, The Temporal Rover and the ATG Rover, LNCS #1885, pp.323-330,
Springer, 2000.

[19] M. Golan, D. Hanson, "DUEL - A Very High-Level Debugging Language", in
Proceedings of the Winter USENIX Technical Conference, San Diego, Jan. 1993.

[20] E. Shapiro, "Algorithmic Program Debugging", MIT Press, May 1982.
[21] P. Fritzson, N. Shahmehri, M. Kamkar, T. Gyimothy, "Generalized Algorithmic

Debugging and Testing", ACM LOPLAS, Vol 1 (4), Dec 1992.
[22] N. Shahmehri, "Generalized Algorithmic Debugging", Ph.D. Thesis No. 260, Dept. of

Computer and Information Science, Link6ping University, S-581 83 Linkrping, 1991.
[23] Y. Liao, D. Cohen, "A Specificational Approach to High Level Program Monitoring and

Measuring", IEEE Transactions on Software Engineering, Vol 18, No 11, Nov 1992,
pp.969 - 978.

[24] R. Sosic, "Dynascope: a Tool for Program Directing", Sigplan Notices 27(7), pp.12-21,
1992.

[25] LeDoux, Carol H. and Parker, D., "Saving Traces for Ada Debugging. Ada in Use", Proc.
of the Ada International Conference, ACM Ada Letters, 5(2), pp.97-108, Sep 1985.

[261 http://www.microsoft.com/net/

Appendix. Syntax for UFO rules

Rules::= ((Rule I Withingroup)';') +
Within group::= 'WITHIN' Procedurename (',' Procedurename)

'DO' (Rule ';') + 'ENDWITHIN'
Rule::= [Label ':']

[('FOREACH' I 'FIND') Pattern ['FROM' 'PROGEX']]
[('FOREACH' I 'FIND') Pattern ['FROM' ('PROGEX' I

Metavariable ['.'('PREVyPATH' I 'FOLLOWINGPATH')])
['SUCH' 'THAT'] Bool-expr
[['WHEN' 'SUCCEEDS'] Sayclause +] ['WHEN' 'FAILS' Saycl~Iuse +]

Sayclause ::= 'SAY' '(' (Expression I Metavariable I Aggregate op) *

Bool expr::= Bool exprl ('OR' Boolexprl)*
Boolexprl ::= Bool expr2 ('AND' Boolexpr2)*
Boolexpr2::= Expr [('=' I '==' I'>' I '<' I '>=' I '<=' '1=') Expr] I 'NOT' Bool.expr2 I

'(' Bool expr ')'
Pattern::= Metavariable ':' Eventtype ['&' Boolexpr]
Aggregate op::= [('CARD' I 'SUM')]'[' Pattern

['FROM' ('PROGEX' I Metavariable ['.'('PREVPATH'I'FOLLOWINGPATH')])]
['APPLY' (Bool expr I Expression)] I'

Expression::= Exprl (* ('+I''-') Exprl *)
Exprl::= Simple expr (('*' 'DIV I 'MOD') Simple expr)*
Simple expr::= '-' Simple expr I integer I Aggregate op I

Metavariable '.' Attribute I string I '(' Expr ')'
Attribute::= (SOURCETEXT I LINENUM I COL NUM I TIME AT END

TIME AT BEGIN I COUNTERAT END I COUNTERAT BEGIN I
DURATION I VALUE I OPERATOR I TYPE I FAILURE I FUNCNAME I
(PARAM_NAMES '[' integer I') I FILENAME I ADDRESS I
(VALUE AT BEGIN I VALUE AT END) '(' Unicon expr')'

Eventtype::= (func.call I expreval I input I output I variable I literal I
Ihp I rhp I clause I iteration I test)

A Component Assembly Architecture with Two-Level Grammar
Infrastructure'

Wei Zhao2 Barrett R. Bryant 2 Fei Cao 2 Rajeev R. Raje 3 Mikhail Auguston 4

Andrew M. Olson 3 Carol C. Burt2

1. Introduction

Being able to generate a concrete software product from domain specifications, upon an order
requirements, still remains a mirage using most modem software engineering techniques. To
provide a systematic way to automate software engineering process, formal models should be
constructed beforehand to capture the various aspects of engineering knowledge for any
predictable software solutions for a particular domain; an infrastructure should be available to
support the automation of any specific product generation by intelligently using the established
engineering knowledge models.

Engineering knowledge involves the decisions made about a software product along its
production line, which includes the policies from domain business executives, expertise from
domain experts, experiences from software managers and engineers, and the techniques from
software developers and programmers. During the software production process, these engineering
knowledge will contribute respectively towards service specifications of the system and the
Quality of Services (QoS), detailed business logic of the system, specifications of software
architecture and role assignments for developers, concrete software development by applying
different programming languages and component-based technologies.

Using current software engineering practices, the investments of engineering knowledge are
all encapsulated in one business organization, making engineering knowledge implicit, vague and
intertwined. However, the latter two aspects are from technology prospective other than business
prospective, and can be most possibly reused across all the business domains. To construct formal
models that capture various aspects of engineering knowledge, and to organize them in such a
way that separation of concern and maximized reuse of engineering knowledge can be achieved,
we categorize this synergy of engineering knowledge into three-dimensional domains:

1) Business domains are associated with the natural categorization of business sectors and the
natural hierarchical structure of business organizations;

2) Functionality domains are based on the functionality and the role of different parts of
software, and their collaboration means and patterns; and

3) Technology domains address the issues related to software implementation technologies
such as component models, programming languages, hardware platforms, and so on.

Different group of people or organizations are expected to be responsible for each domain.
The successful construction of the Generative Domain Model (GDM) [CzaOO] (for each domain

1 This material is based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army
Research Office under contractigrant numbers DAAD 19-00-1-0350 and 40473-MA, and by the U. S. Office of Naval
Research under award number N00014-01-1-0746.
2 Department of Computer and Information Sciences, University of Alabama at Birmingham, Birmingham, AL
35294-1170, U. S. A., {zhaow, bryant, caof, cburt}@cis.uab.edu.
3 Department of Computer and Information Science, Indiana University Purdue University Indianapolis,
Indianapolis, IN 46202, U. S. A., {rraje, aolson}@cs.iupui.edu.
'4 Computer Science Department, New Mexico State University, Las Cruces, NM 88003, U. S. A.,
mikau@cs.nmsu.edu.
5 By "order requirement", we mean either a requirement document written in natural language by human or a system
construction request from another computer program.

mentioned above), would assist in automating the development of software products under the
guidance of model transformations and refinements from the highest model (GDM) to more
specific intermediate models. This would finally lead to the end software products. This paper
describes the UniFrame project that aims at this goal.

2. Related Work

Toward the goal of automatic production of software, there have been many attempts in
domain engineering, system generation and model transformations. We describe a few prominent
ones here.

Generative Programming [CzaOO] is well known for providing a vision of automatically
generating products from a GDM, a specification of the product domain. However, the examples
provided for elementary components envisioned by the authors are limited to C++ structs and
classes with templates, which may not be sufficient to solve problems on the scale of distributed
and component-oriented computing. Many problems like universal interoperability should be
solved during system integration and generation. Widely known efforts such as CORBA [Corba],
Web Services [W3C] and Model Driven Architecture (MDA) [OMGO1], an initiative of the
Object Management Group (OMG), arose as possible solutions for the interoperability problem.

MDA sketches out a model transformation series, which transforms a business model to a
Platform Independent Model (PIM), then to a Platform Specific Model (PSM), and finally gets to
the executable code. Steps of model transformations certainly contribute to the automated product
generation from the high level specifications. Nevertheless, MDA currently appears to be only
concentrating on the model transformation for a single system. It also does not specify the
assembly of a system out of many available components.

FORM [Kan98] provides methods to construct feature models for a domain during the
domain engineering phase and to generate concrete systems by applying feature selection during
the application engineering phase. FORM defines domain features in terms of services, domain
technologies, operating environments and implementation techniques. We do consider it to be
inappropriate that the feature models for a business domain should include the latter two, as it is
not a good practice of separation of concerns, and can be a further obstacle for system flexibility
evolvability and engineering knowledge reuse. The architecture defined in FORM from three
different viewpoints (subsystem, process and module) does not capture the multi-dimensions of
engineering knowledge during a product manufacturing process.

3. UniFrame Architecture Overview

The UniFrame project 6 is a framework for:

I) Providing an architecture for automated software product generation, upon an order
requirement, based on the assembly of a selection from an ensemble of searched
components (with which we believe we can overcome limitations mentioned in section
2);

2) Providing a practical technique based on the formalism of Two-Level Grammar (TLG)
[Bry02], which serves as the infrastructure enabling the automation of software
production by steps of model transformations.

UniFrame has two levels:

6 This project goal statement is phased according to our newly developed ideas and is different from the

original official one, which is "Seamless integration of heterogeneous and distributed software
components" [UniFr].

• GDMs for business domain, functionality domain and technology domain jointly
comprise the core part of the system level of UniFrame. The GDM for the business
domain mainly contains: domain feature models, standardized elementary domain
service/ specifications uniquely identified by their Universal Resource Identifiers (URIs),
associated Quality of Service (QoS) parameters, service collaboration patterns, typical
computing algorithms for this business domain, domain specific language, etc. Some
preamble of a business GDM may be a standardized Stack class provided by J2SE
[J2SE] for the domain of the object "stack", or OpenGL [OpenG] for the domain of
graphics and images processing. The functionality domain GDM is essentially a reference
architecture model that identifies the functionality, the role and the collaboration patterns
among different parts of software. The GDM for technology domain deals with the
interoperability across heterogeneous implementation technologies and programming
languages. The UniFrame system level sets the context for developing a family of
products. We propose an Internet Component Exchange and Assembly (ICEA) 8 center
for each business domain for developing and maintaining the business GDM.

* The UniFrame component level gives the view of the single system development.
Component developers have the freedom of choosing any implementation technology,
underlying hardware platform, or programming language to implement any standardized
service or a group of services confining to the service specifications in the business
GDM. The developer even has the freedom to name services as long as a DNS server
(specialized in this context) can perform the correct translation to the one with
standardized semantics and unique URI in the business GDM. Upon the accomplishment
of the individual component development, developers need to fill out a Unified Meta-
Component Model (UMM) [RajO0] form to formally describe the components. UMM0 identifies the niches of this component in various GDMs, provides the QoS of this
component and the address of the native component registry (e.g. RMI registry if this
component is developed in RMI). Then the developers need to register the UMM to its
respective ICEA. Hopefully, in the future, this process can be further facilitated by MDA
techniques: the developers pick up the business model for any business services, and
apply the model transformations to get to the executable code.

TLG is used to represent the three GDMs and the UMM. Because the domain services are
standardized and factored, it is feasible for the users to explicitly identify the service semantics in
their order requirements. The automatic production is carried out by the joint-effort among the
feature models in the three GDMs, feature selection from order requirements, and feature
identification and concretization in the UMM. At the system generation time, we need apply the
service interaction patterns from the feature models in business GDM for homogeneous
components; if the components are heterogeneous, we need apply the component interaction
patterns from the functionality GDM, and then use the mapping and translation rules stored in the
technology GDM for building interoperability. More precisely for interoperation, the UMM
specification (in TLG) will be translated into WSDL [W3C][CaoO2], making Web Services the
underlying communication technique. The model transformation computation supporting product
automation is performed by the TLG interpreter that computes steps of substitution (the first level
context-free grammar) between two models (grammar's left and right hand side) guided by the
transformation rules (the second-level context-free grammar). Different levels of models will be

7 The "service" is not an executable entity. It is a concept of a slot of domain businesses. The "component"
defined under a component model can be executed within a component framework. The component
developers build software components by concretizing services. The "component" is a technologic carrier
for "services".
8 It is our notion of a group of people or organizations for this purpose.

represented by groups of TLG classes, e.g. Class Withdraw is a service description in the bank
domain GDM.

class Withdraw.
Passin :: AccountNumber, Amount.

end class.

A lower level model could further define AccountNumber as:
class AccountNumber.

Type :: Integer.
Language :: c++.

end class.

Or as: class AccountNumber.
Type :: String.
Language :: java.
Lexeme :: letter (letter I number)*.

end class.

Please refer to [Bry02] for more details on TLG, and refer to [Zha02] for our current definition

and examples of TLG as an executable code generator.

4. Engineering Principles Employed in Designing UniFrame

Various engineering principles are observed in designing UniFrame architecture to fulfill its goal:
"* Modularity is the fundamental consideration in designing UniFrame. In UniFrame, the

final system (product) is built from components, which in turn are built around one or
more services. The atomic and factored services (or features) is the truth that the system
can be generated on demand from requirements, in another word, across all the products
of a product family, what can really be reused and re-structured are the elementary
services. Given all the possible elementary services for a business domain, a wide
spectrum of systems can be generated by various combinations of services. Service
composition rules (e.g. domain feature models) are embedded in the business GDM, and
the component composition rules [Sun02] are embedded in the functionality GDM.

"* The principle of autonomy and separation of concerns naturally separates the
multidimensional engineering knowledge into three GDMs maintained by different
groups of people, respectively. On the maturity of UniFrame, we hope the stabilized
infrastructure will have three sets of APIs that will enable the creation/maintenance of
these three GDMs. The experts in different domains have the freedom of controlling their
domains; the component developers have their own choice about the implementation
details. This makes UniFrame flexible, dynamically re-configurable and evolvable.

"* UniFrame also supports a transparent communication channel. The business GDM with
standardized services and their QoS is the communication media among the users, the
system and the component developers, which ensures what the component developer
supplies and what the system produces is exactly what the users want. It also suggests

O that the automated production could start from as early as order requirements.

Reflection and intelligent reasoning of model transformations with minimum human
interaction is also a key attribute of UniFrame. UMM, a reflection of a component,
together with three GDMs provide the TLG-facilitated infrastructure enough knowledge
to pursue intelligent reasoning in the process of system assembly, e.g. automatically
reason about component properties and relationships.

5. Two-Level Grammar

As UniFrame maturates, the infrastructure is not intended for frequent human manipulations.
It is reasonable to choose TLG (textual with functional and logic programming language style) as
the machine-understandable infrastructure and use UML as the human-system interface (e.g., for
representing GDMs and transformation rules externally). Tools will be constructed to perform the
translation between internal and external representations.

With natural language-like syntax, a TLG specification is self-descriptive and very
understandable. Therefore, TLG has more potential to be mastered by software engineers than
other formal methods such as Z [Spi89].

XML is very suitable for data exchange and description, but not for code generation or even
more complicated tasks like model transformations. In a pure sense, XML carries no more
semantic meaning than HTML. XML itself does not perform a computation, but relies on the
intelligence of non-reusable XML processing engines. On the other hand, TLG is Turing
complete with very nice logic and functional language style reasoning. Regarding readability, the
frequent use of angle bracket templates in Xpath and XSLT [Cle0 I] makes the readability of the
generator poor. TLG offers improvements in readability, as well.

TLG is Object-Oriented (00), making it a good candidate for formal specification of 00
computing entities. Additionally, TLG goes beyond 00 programming languages with its unique
syntax and semantics. A simple rule such as:

NewObject:: {Objectl }I* Object2, Object3; Object4.

states a rather complicated feature selection and federated construction of the NewObject: the
NewObject could be constructed by zero or more instances from domain Object I followed by an
instance from domain Object2, and an instance from domain Object3; or the NewObject could be
constructed by an instance from domain Object4. It would require a large block of statements in
an object-oriented programming language to represent the same intent. In TLG, it is very easy to
combine objects and flat entities (literals) together as features because both terminals and
nonterminals are allowed on the right hand side of meta-rules.

TLG has two levels. The meta level computation can be viewed as model/pattern
transformations. More abstract patterns on the left hand side can be substituted by many
combinations and alternatives of more specific patterns on the right hand side of the grammar.
The hyper level context-free grammar (together with the consistent substitution) sets the context
for the first one: rules and logic for applying patterns, very suitable for plug-and-play component
composition. Also for each context-free grammar, we can automate the feature configuration
validation and constraint checking [Jon02], leveraging widely available open parser and type
checker generator facilities such as CUP [CUP99].

6. Conclusion

This extended abstract provides the overview of the UniFrame architecture, considerations in
* designing UniFrame and the issues of infrastructure implementations. The novel contribution of

UniFrame is to bridge the gap between the vision of Generative Programming and the existing

MDA framework: we provide a practical architecture and a infrastructure technique using the

MDA model transformation idea to fulfill the goal of Generative Programming.

7. References

[Bry02] B. R. Bryant, B.-S. Lee, "Two-Level Grammar as an Object-Oriented Requirements Specification
Language," Proc. 3 5 'h Hawaii Int. Conf System Sciences, 2002.

[Cao02] Fei Cao, Barrett Bryant, Carol Burt, Rajeev Raje, Mikhail Auguston, Andrew Olson. "A
Translation Approach to Component Specification," (poster), OOPSLA'02,2002.

[Cle0l] J. C. Cleaveland. Program Generators with XML and JAVA. Prentice Hall 2001.

[Corba] Common Object Request Broker Architecture (CORBA), http://www.corba.org/

[CUP99]CUP parser generator for Java. http://www.cs.princeton.edu/-appel/modemi/java/CUP/

[CzaOO] Czarnecki, K., Eisenecker, U. W., Generative Programming: Methods, Tools, and Applications,
Addison-Wesley, 2000.

[J2SE] Java7" 2 Platform, Standard Edition, http://java.sun.com/docs/index.html

[Jon02] M. D. Jonge, J. Visser "Grammars as Feature Diagrams" Proceedings of Workshop on Generative
Programming, April 2002. http://www.cwi.nl/events/2002/GP2002/papers/dejonge.pdf

[Kan98] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, Moonhang Huh, "FORM: A
Feature-Oriented Reuse Method with Domain-Specific Reference Architectures," Annals of
Software Engineering 5, pp. 143-168, 1998.

[OMGOI] Object Management Group. Model Driven Architecture: A Technical Perspective. Technical
Report. Document #ormsc/2001-07-01. Framingham, MA: Object Management Group. July 2001.

* [OpenG]OpenGL. http://www.opengl.org/

[RajO1] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson, C. C. Burt, "A Unified Approach for the
Integration of Distributed Heterogeneous Software Components," Proc. 2001 Monterey Workshop
Engineering A utomation for Software Intensive System Integration, 2001, pp. 109-119.

[Sun02] C. Sun, R. R. Raje, A. M. Olson, B. R. Bryant, M. Auguston, C. C. Burt, Z. Huang, "Composition
and Decomposition of Quality of Service Parameters in Distributed Component-Based Systems,"
to appear in Proc. Fifth IEEE Int. Conf Algorithms and Architectures for Parallel Processing,
2002.

[Spi89] J. M. Spivey, The Z notation: a reference manual. Prentice Hall, New York, 1989.

[UniFr] UniFrame http://www.cs.iupui.edu/uniFrame/

[W3C] World Wide Web Consortium, Web Services, http://www.w3.org/2002/ws/

[Zha02] W. Zhao. "Two-Level Grammar as the Formalism for Middleware Generation in Intemet
Component Broker Organizations." Proceedings of GCSE/SAIG Young Researchers Workshop,
held in conjunction with the First ACM SIGPLAN Conference on Generative Programming and
Component Engineering, 2002. http://www.cs.uni-
essen.de/dawis/conferences/GCSESAIGYRW2002/submissions/final/Zhao.pdf

O
Some Axioms and Issues in the UFO Dynamic Analysis Framework

Clinton Jeffery Mikhail Auguston

Department of Computer Science Department of Computer Science

New Mexico State University Naval Postgraduate School

jeffery@cs.nmsu.edu maugusto@nps.navy.mil

Abstract exploration of the current research problems and our plans

UFO is a framework for constructing dynamic analysis to address them.

tools that require varying degrees of access and control 2. Axioms
over program executions. UFO combines run time and
post-mortem techniques to perform required analyses. UFO is primarily an implementation of FORMAN

Declarative and imperative notations are provided for built on top of the Alamo monitor architecture. Early

constructing monitors at appropriate semantic levels, experiments showed the marriage to improve FORMAN

Multiple analyses can be bundled into a given monitor, speed by two orders of magnitude and shorten the lines of

and multiple monitors can be applied to a given target code necessary to write Alamo monitors by one order of

program execution. This paper presents the central tenets magnitude. This section sketches the primary

of UFO, along with our current set of research characteristics of UFO.

challenges. * A precise program behavior model, in which
semantics of the monitored language are mapped

1. Motivation to directed acyclic graphs of events. These graphs
are defined using an event grammar, a notation

A utomatic debugging and program visualization are that approximates the semantics of the language to
two of the most promising application areas of dynamic be monitored. The behavior model is essential to
analysis, with potential to impact on crucial areas of provide general purpose capabilities for a wide
software development and maintenance. We believe the range of tools.
slow rate of advancement in these areas is due to the high * A declarative special-purpose monitoring
cost of developing new tools. We have previously focused language, tailored specifically for dynamic
on a language (FORMAN) and an architecture (Alamo) analyses expressed in terms of patterns within the
that reduce these costs [1][2][4]. FORMAN is a special- graphs of events. This component is necessary to
purpose language for expressing dynamic analyses; it has reduce the cost of developing new tools. Section 4
been implemented previously for subsets of Pascal and C. provides some examples; shorthand refinements to
Alamo is a lightweight architecture for program execution improve the syntax could be explored after the
monitoring; it has been implemented for a subset of C and main semantics and performance issues are
for the virtual machine used by the Icon and Unicon resolved.
programming languages. The virtual machine * An hybrid execution model, in which most
implementation of Alamo is attractive for research analysis work is performed at run-time, and more
because it provides high performance and superior ease of complex analyses transparently combine run-time
use for a full-size "real" programming language, allowing collection and partial analysis with more extensive
testing on large programs and the possibility of deploying post-mortem analysis. This element is necessary
successful tools to a user community. but not sufficient by itself to achieve acceptably

We recently merged the FORMAN and Alamo efforts high performance for large scale production
to produce UFO (Unicon-FORMAN), a framework for systems. This important element is new in UFO,
rapidly constructing dynamic analyzers [3][4]. We have compared with previous FORMAN and Alamo
used UFO to construct a variety of simple automatic efforts. It provides high performance.
debuggers and visualization tools that run well on small * Automatic instrumentation provided by special-
and medium sized applications. Our next efforts must purpose virtual machine support; static or dynamic
walk the tightrope of scaling up to production tools for configuration of VM instrumentation; no
large applications, while retaining the power and ease of recompilation, relinking, or alteration of target
Jse that are characteristic of the current research UFO program executables to be monitored. This

O system. With that in mind, this paper presents the central provides substantial ease of use.
tenets of the UFO system, and concludes with an

3. Some Research Issues and Challenges which may constitute the input for higher level analyses.
This facilitates the sharing of analysis information among

UFO's chief design goals revolve around notational tools, reducing the cost of running multiple tools.
power and ease of use. The current prototype
implementation of UFO [5][5] processes millions of 4. Examples of debugging rules
events per minute. But, for large programs higher
performance is needed. This goal motivates several open Alamo's goal was to reduce the difficulty of writing

problems we are pursuing. execution monitors to be just as easy as writing other
types of application programs. UFO supports FORMAN's

Minimizing the number of context switches. UFO's more ambitious goal of reducing the difficulty of writing

run-time execution model is based on lightweight automatic debuggers to the task of specifying generic

coroutine switches between monitors and the program assertions about program behavior.

being observed. This separation is a compromise between This section presents formalizations of typical

intrusive in-line single-thread execution used in low-cost debugging rules. UFO supports traditional precondition

analysis tools such as profilers, and the complete checking, or print statement insertion, without any

separation imposed by high-cost analysis tools such as modification of the target program source code. This is

debuggers. One research goal is to retain the abstraction especially valuable when the precondition check or print

and low-intrusion benefits of the coroutine model without statement is needed in many locations scattered

having to pay (so much) for it. throughout the code.

Virtual machine configuration and customization. The Example #1: Tracing. Probably the most common

VM instrumentation can be turned off at multiple levels, debugging method is to insert output statements to

including compile-time via #ifdef and run-time via a generate trace files, log files, and so forth. It is possible to

dynamic filter that controls whether instrumented or request evaluation of arbitrary Unicon expressions at the

uninstrumented versions of functions are called, and beginning or at the end of events. The virtual machine
whether an event report (via lightweight context switch) is evaluates these expressions at the indicated time

performed for a given instrumentation site. This moments.

configuration can be further exploited by having the UFO
compiler generate a custom VM with exactly the FOREACH A:func_call &
instrumentation it needs for a particular monitoring A.funcRname == pmyunc

application. The central VM interpreter function (interpo) A.value atbegin(

can benefit from a finer granularity of customization than write("entering myfunc, value of X is:", X)) AND
the current instrumented-versus-uninstrumented options; A.value at end(
it is critical to performance and contains 30 of the 119 write("leaving myfunc, value of X is:", X))
types of events instrumented in the VM. Generating a
custom VM may greatly improve monitoring performance This debugging rule causes calls to write() to be
within this VM interpreter loop. The VM generation evaluated at selected points at run time, just before and
system needs to make it easy and convenient for the UFO after each occurrence of event A.
compiler to generate custom VM's and associate them
with generated analyzers in a persistent manner. Custom Example #2: Profiling. A myriad of tools are based on a
VM's should be shareable by monitors that use the same premise of accumulating the number of times a behavior
events. occurs, or the amount of time spent in a particular activity

or section of code. The following debugging rule
Inter-monitor optimizations. When multiple analyses illustrates such computations over the event trace.
are compiled together, substantial cost savings might be
obtained by factoring common tasks such as event data SAY("Total number of reado statements:"
collection. For example, a profiler that computes CARD[r: input & r.filename == "xx.in"
summaries and a visualizer that shows run-time details FROM progex]

"Elapsed time for read operations is:"
might operate on the same information, and might even sUM [inu & read erations is:
share some common analysis structures. SUM [r: input & r.filename == "xx.in"

FROM prog_ex APPLY r.duration]). Meta-events and analysis hierarchies. UFO's event
model composes higher level events from lower level
ones, but analysis tools create additional information

O
Example #3: Pre- and Post- Conditions. Typical use of mortem analysis, the UFO runtime system computes a
assertions includes checking pre- and post-conditions of projection of the execution DAG necessary to perform the
function calls, analysis.

The UFO compiler generates Alamo Unicon monitors
FOREACH A:funccall & A.func_name=="sqrt" from FORMAN rules. Each FORMAN statement is

FROM prog ex translated into a combination of initialization, run-time,
A.paramlist[1] >=0 AND and post-mortem code. Monitors are executed as
abs(A.value*A.value-A.paramlist[1]) < epsilon coroutines with the Unicon target program.

WHEN FAILS SAY("bad sqrt(" A.paramlist[1] Monitors generated by the UFO compiler reduce
") yields" A.value) complex assertions to the single event loop. Keeping

1 Generic Bug Descriptions event detection in a single loop allows uniform processing
4.1 Gof multiple event types used by multiple monitors. The

Another prospect is the development of a suite of code generated by the UFO compiler integrates event

generic automated debugging tools that can be used on detection, attribute collection, and aggregate operation
any Unicon program. UFO provides a level of abstraction accumulation in the main event loop.
sufficient for specifying typical bugs and debugging rules. Assertions in UFO may use nested quantifiers

implying two nested loops, so code generation addresses
Example #4: Detecting Use of Un-initialized Variables. this issue by flattening the main loop structure, and
Reading an un-initialized variable is permissible in postponing assertion processing until required
Unicon, but often leads to errors. In this debugging rule information is available. An hybrid code generation
all variables in the target program are checked to ensure strategy performs runtime processing whenever possible,
that they are initialized before they are used. delaying analyses until post-mortem time when necessary.

Different assertions require different degrees of trace
FOREACH V: variable FROM prog_ex projection storage; code responsible for trace projection

FIND D: Ihp FROM V.prevpath collection is also arranged within the main loop. The
D.sourcetext == V.sourcetext following generation template gives a flavor of the UFO

WHEN FAILS SAY("uninitialized variable" trace projection mechanism.
V.sourcetext)

Example #5: Empty Pops. Removing an element from Rules with two nested quantifiers of the form

an empty list is typical of expressions that fail silently in Quantifier A: Pattern_A
Unicon. While this can be convenient, it can also be a Quantifier B: PatternB FROM A
source of difficult to detect logic errors. This assertion Body
assures that items are not removed from empty lists.

utilize a monitor whose main loop follows the pattern:
FOREACH a: funccall &

a.funcname == "pop" AND Main Loop
a.value at begin(*a.paramlist[1] == 0) Maintain stack of nested A events

SAY("Popping from empty list at event" a) Accumulate events B in a B-list
If end of event A

5. Implementation Issues Loop over B-list
Do Body

The most important of these issues is the translation Endif
model by which FORMAN assertions are compiled down If stack of A is empty
to Unicon Alamo monitors. Debugging activities are Destroy B-list

written as if they have the complete post-mortem event

trace, the DAG with events, event attributes, and This requires accumulation of a trace projection for B-
precedence and containment relations, available for events and may cause a mild overhead at the run time.
processing. This generality is extremely powerful;
however, for most practical uses we have seen, assertions
can be compiled down into monitors that execute entirely
a, runtime. Runtime monitoring saves enormously on The UFO approach combines an optimizing compiler

emory and 1/O requirements and is the key to practical for monitoring code with efficient run-time event
"implementation. For those assertions that require post- detection and reporting. Since we know at compile time

O
all necessary event types and attributes required for a Preliminary experiments demonstrate that this

given UFO rule, the generated Unicon monitor can be architecture is scalable to real-world programs.

very selective about the behavior that it observes. One of our next steps is to build a repository of

For certain kinds of UFO constructs, such as nested formalized knowledge about typical bugs in the form of

quantifiers, the monitor must accumulate a sizable UFO rules, and gather experience by applying this

projection of the complete event trace and postpone collection of assertions to additional real-world

corresponding computations until all required information applications. There remain many optimizations that can

is available. The presence of the previouspath and improve the monitor code generated by the UFO

following path attributes in UFO rules triggers this kind compiler; for example, merging common code used by
of optimization; previouspath and followingpath are multiple assertions in a single monitor, and generating
used in rules which specify preceding or following specialized VMs adjusted to the generated monitor.
contexts for events of interest.

For further optimization, especially in the case of Acknowledgements
programs containing a significant number of modules, the

following FORMAN construct limits event processing to This work has been supported in part by U.S. Office of
events generated within the bodies of functions Naval Research Grant # N00014-01-1-0746, by U.S.
FI, F2, ... , Fn. Army Research Office Grant # 40473--MA-SP, and by

WITHIN F1, F2,..., Fn DO the National Library of Medicine.
Rules

ENDWITHIN References
This provides for monitoring only selected segments of
the event trace. [1] M. Auguston, Program Behavior Model Based on Event

Unicon expressions included in the value atbegin Grammar and its Application for Debugging Automation,
and value at end attributes are evaluated at run time. in the Proceedings of the 2nd International Workshop on

* Some other optimizations implemented in this version Automated and Algorithmic Debugging, AADEBUG'95,
are: Saint-Malo, France, May 22-24, 1995, pp. 277-291.

"* only attributes explicitly used in the UFO rule are [2] Clinton L. Jeffery, Program Monitoring and Visualization:

collected in the generated monitor; an Exploratory Approach. Springer, New York, 1999.

"* an efficient mechanism for event trace projection [3] M. Auguston, A. Gates, M. Lujan, "Defining a Program
Behavior Model for Dynamic Analyzers", in the

management, which disposes from the stored Proceedings of the 9th International Conference on
trace projection those events that are no longer Software Engineering and Knowledge Engineering,
used after a certain rule has been fully evaluated; SEKE'97, Madrid, Spain, June 1997, pp. 257-262.

"* both event types and context conditions are used [4] M. Auguston, "Lightweight semantics models for program
to filter events for the processing. testing and debugging automation", in Proceedings of the

UFO's goal of practical application to real-sized 7th Monterey Workshop on "Modeling Software System
programs has motivated several improvements to the Structures in a Fast Moving Scenario", Santa Margherita

already carefully-tuned Alamo instrumentation of the Ligure, Italy, June 13-16, 2000, pp.23 -3 1.
Unicon virtual machine. We are working on additional [5] M. Auguston, C. Jeffery, and S. Underwood. "A
Unticization s. vFramework for Automatic Debugging", IEEE 17'h Intl.
optimizations. Conf. on Automated Software Engineering, Edinburgh,

We expect that the most promising optimizations are September 2002, IEEE Computer Society Press, pp.2 17-
within the generation of instances of Virtual Machine 222
tailored for a particular monitoring task. [6] C. Jeffery and M. Auguston. "Towards Fully Automatic
6. Conclusions Execution Monitoring". Monterey Workshop 2002,

Venice, October 2002, sponsored by US Army Research

The architecture employed in UFO could be adapted Office and NSF, pp.232-243
for a broad class of languages such as those supported by [7] Clinton Jeffery, Shamim Mohamed, Ray Pereda, and

the Java VM or the .net VM. Our approach to dynamic Robert Parlett, "Programming with Unicon",
http://unicon.sourceforge.net.

analysis uniformly represents many types of debugging- [8] Ralph E. Griswold and Mad ge T. Griswold, The Icon
related activities as computations over traces, including Programming Language, 3 edition. Peer to Peer
assertion checking, profiling and performance Communications, San Jose, 1997.#measurements, and the detection of typical errors. We

4 ave integrated event trace computations into a
monitoring architecture based on a virtual machine.

Automating Feature-Oriented Domain Analysis

Fei Cao, Barrett R. Bryant, Carol C. Burt
Department of Computer and Information Sciences

University of Alabama at Birmingham
{caof, bryant, cburt}@cis.uab.edu

Zhisheng Huang, Rajeev R. Raje, Andrew M. Olson
Department of Computer and Information Science

Indiana University Purdue University at Indianapolis
{zhuang, rraje, aolson}@cs.iupui.edu

Mikhail Auguston
Computer Science Department

Naval Postgraduate School
auguston@cs.nps.navy.mil

Abstract analysis has to be applied to scope a system
family and to identify the commonalities,

Feature modeling is commonly used to variabilities and dependencies among family

capture the commonalities and variabilities of members. A crucial outcome of the domain

systems in a domain during Domain Analysis. analysis phase is a feature model, which is

The output of feature modeling will be some usually represented as a feature diagram.

reusable assets (components, patterns, domain- However, the application of feature diagrams is
specific language, etc.) to be fed into the quite limited, due to the fact that current practice

application engineering phase for ultimate is not fully automated, while the size of the set of

software products. But current practice lacks an feature instances may be expanded exponentially

automatic approach for seamless generation of (which we will see later in this paper), thus it is

reusable assets from feature models. This paper difficult to apply constraint checking and other

presents an algorithm for generating sets of types of computing. In order to align with the

instance descriptions (feature instances) from goal of GP for the highest level of automation, to

feature models of a domain and applies this cope with family system processing (which is

algorithm in creating a Generic Feature usually of a large scale), feature modeling should
Modeling Environment for automating Feature- be carried out in an automatic fashion to
Oriented Domain Analysis. seamlessly generate reusable assets to be used in

application engineering for constructing a family

Keywords: Feature Modeling, Domain Analysis, of applications. This paper presents an algorithm

Generative Programming for generating the set of all feature instances
from a feature diagram and applies this algorithm

1. Introduction in creating a Generic Feature Modeling
Environment (GFME) for automating Feature-
Oriented Domain Analysis (FODA). This paper

Generative Programming (GP) [CzarOO] has is organized as follows: Section 2 briefly
emerged as a software development paradigm for describes major related research efforts. Section
automatic generation of software products based 3 gives the algorithm for computing feature
on modeling of software system families. The models. Section 4 presents the GFME created
distinct property of GP is it is not only about a with the Generic Modeling Environment (GME)
development for reuse in terms of building a 2000 [GME01]. Section 5 draws the conclusion
Generative Domain Model (GDM) for software of this paper.
system families, but also about a development
with reuse in terms of using GDM to generate
concrete systems. To build a GDM, domain

2. Related Work efficient generation of reusable assets. This paper
presents an approach toward bridging this gap.

Feature models were initially introduced by
the FODA method [Kang90]. In the FODA 3. An Algorithm for Feature Diagram
method, a feature is defined as an end-user- Computing
visible characteristic of a system. This model

uses a feature diagram to represent a hierarchical In contrast to computing features by
decomposition of features, which include transforming feature diagrams to some other
mandatory, alternative or optional features. representation forms (such as UML or FDL)
Feature constraints, stakeholders and rationales first, we are going to apply the proposed
are also incorporated in this feature model. algorithm directly over the feature diagram. We
Czarnecki and Eisenecker [CzarOO] give a more first briefly describe the representations used in
detailed account of feature diagrams including [CzarO0] illustrated in Figure 1. The mandatory

diagram normalization, feature is represented by being attached to an

The FODA method uses Prolog in a prototype edge ending with a filled circle. So the feature F

tool for doing checking over some sets of feature consist obth Cllad cinc ase an the
valus. oweer, eatreshav to e sore in consists of both C I and C2 in this case, and the

values. However, features have to be stored in feteinacshrereFCC}Te

the Prolog fact base first, rather than being feature i s rep re by ben attache

analyzed directly over the feature diagram, thus optional feature is represented by being attached
the too] is not seamlessly integrated with the to an edge ending with an unfilled circle. So the
thestool disgno seamine.sCyaintegrated withten feature F may or may not contain Cl. The
visual diagram setting. Czamecki and Eisenecker optional feature instances here are (F, C2} and
[Cplemnatio n aof fexre thes b ppoibe F, Cl, C2}. The alternative feature is
implementation of feature diagrams by mapping represented by connecting edges with an arch. So
into UML, which inn may be used to generate the feature F consists of exactly one of its child
some implementation codes using such CASE features. The alternative feature instances here
tools as Rational Rose'. The mapping process, ae(,C n F 2.Nt hti li

however, is again a manual process. Also, what are o F, CIo and {F, C2i . Note that if Ct is
RatinalRos ca geerae ae jst ome optional while C2 is mandatory, then the

Rational Rose can generate are just some alternative feature instances here are {F), {F,

skeleton codes, which are far from being Cl} and {F, C2), because the child feature

Feature models can be represented not only in instances derived from the Cl side contain an

graphical form using feature diagrams, but also empty feature. The Or feature is represented by

in textual form. Van Deursen and Klint [Deur02] connecting edges with a filled arch. The Or
feature instances here are {F, CI }, {F, C2} and

propose a Feature Description Language (FDL) {F, C l, C2}. If there is an optional child feature,
for textual representation of feature diagrams. then the Or representation is actually equivalent
Manipulation of features is achieved by Feature t h iuto htaltecidfaue r

Diagram Algebra (FDA), which consists of four op tion i he., the Or featur es wle

sets of rules: normalization rules, variability optional, i.e., the Or feature instances will be

rules, expansion rules and satisfaction rules. The F p, eF, C 1 t, iF, C2} and aF, C 1, C2i.
FDL can be fed into the a tool named These representations can also be intermingled
"F SDL ca MetafEdvironto nthe atool named in feature diagrams, such as in Figure 2. These
"AiFect Mxetia-Environments [Br for prototymixture forms can be normalized so that it is
direct execution as a basis for prototype tool eairtbeposedeg.Fgue2cne

support, which again is not seamlessly integrated easier to Figure 3.

with graphical representations of feature normalized into Figure 3.

diagrams; the capacity of constraint checking is This normalization can be performed
quitediagr s; the FDA is separated from, rather iteratively over all such "mixture relation" nodes
quite limited; a par atedifram; the in the feature diagram. In this way, the father-
than integrated as part of the feature diagram; the fauei h etr iga ilol eete

generation of reusable assets from FDL is not fauei h etr iga ilol eete
flexible. XOR (corresponding to alternative), or OR, or

Obviously for the related work mentioned in AND in relationship to child-features.
this section, there is a gap between using feature Meanwhile, each child-feature may be either
tiagrms ston fathre is dengap b end usineatres, optional or mandatory. Obviously, the
diagrams for feature modeling and a seamless, normalization process described here is fulfilled

by adding hierarchy into the original feature tree

www.rational.com

*, L i F F

Mandatory Feature Optional Feature (for Cl) Alternative Feature Or Feature

Figure 1: Feature Diagram Representation

F

Fl F2

cl c2 03 c4

Figure 2: Mixture of Feature Representation Figure 3: Normalized Feature Representation

without loss of any commonality and variability enurn (XOR, OR, AND) feature-relation;

representations. After such normalization is /*denotes the father-child relation *I

performed, the feature diagram will be in the ChildConnectionList *edges;

structure as in Figure 4. The proposed algorithm /*list of connections associated with

will be applied over such normalized feature its child-feature nodes

diagrams thereafter.
struct ChildConnectionList {

F bool isMandatory ;
<<feature- /*is a mandatory/optional feature*/
relation>> FeatureNode * aFeature;

/*point to a feature node*/

From the data structure above we can see that

S......<feature-reation we can get access to the child-nodes of a feature
=XOR JOR lAND node by traversing its associated edges.

Cl, C2 may be a sub- Currently, the result of the algorithm to
diagram compute the feature diagram is just the set of all

.. C2 .feature instances of a feature diagram. The result
will be represented as a list. Each element of the
list corresponds to a feature instance. Each
feature instance in turn is represented as a list,

Figure 4: Variation of Feature Diagram which consists of the list of pointers to the
related feature node. The result is represented as
follows:

Suppose each feature node is represented as typedef List<FeatureInstance *> Result;

the following data structure (note that without typedef List<FeatureNode *>
FeatureInst ance ;

loss of generality, the following data structure

may not be strictly consistent with a specific Below is the pseudo code for the algorithm.
C++ programming environment): The input parameter to the algorithm is the

pointer to the root node of a feature diagram. The
struct FeatureNode; output will be all feature instances derived from

the feature diagram. Note the variables are in
italicized font while the types are in bold font.

Result processFeatureDiagram(exemplify the above algorithm, we use E to
FeatureNode *node-root)

(F erepresent an empty Result, x for production, u
create a templ:Featurelnstance with for union operation in Figures 5-7, which
only node-root in it; correspond to three types of cases for computing

create a temp2: Result with only one the set of feature instances. Also from Figure 7
FeatureInstance templ in it; we can easily see the size of feature set may

if (node-root has no child nodes) grow exponentially (as to the extreme case where
then return temp2; all feature-relations are OR , the size will be 2",

else where n is the amount of leaf nodes).
if (node-root->feature-relation==AND) Here we put the non-leaf node (like F here)

into the feature instances in order to facilitate
recursively call processFeatureDiagram constraint checking. If one non-leaf feature F is
over each of node-root's child-nodes,
each returning a child result; supposed to be excluded in the final feature

instance, then its child-features should not be
"if corresponding child node is included correspondingly, and we can eliminate
"Optional" ,

add an empty FeatureInstance into the those feature instances from the final result by
corresponding child result; identifying which feature instance contains

calculate the production of all the feature F, rather than by tracking down all its
returned child results as temp3:Result; child-features laboriously.

return the production of temp2 and
temp3; 4. A Generic Feature Modeling

s Environment (GFME)else
if (node-root->feature-relation==XOR)

We use the Generic Modeling Environment
recursively call processFeatureDiagram
over each of node-root's child-nodes, (GME) [GMEOI] to build GFME. GME is a
each returning a child result; configurable toolkit for creating domain-specific

calculate the union of those returned modeling and program synthesis environments.
child results as temp3:Result; The configuration is accomplished through

if there is a child node that is metamodels specifying the modeling paradigm
"Optional", (modeling language) of the application domain.
add an empty FeatureInstance .into The modeling paradigm defines the family of
temp3; models that can be created using the resultant
return temp3; modeling environment. The metamodels

specifying the modeling paradigm are used to

else automatically generate the target domain-specific
if (node-root-> lea ture-rel a ti on==OR) environment. GME provides the Builder Object

recursively call processFeatureDiagram Network (BON) framework for building
over each of node-root's child-nodes, interpreters to interpret domain models built in
each returning a child result; the domain-specific environment. The

for each of the child result returned interpretation process can be used to generate
in the above call,
add an empty FeatureInstance into it; reusable assets for the domain engineering phase.

The BON API provides leverages for access to
get the production of all the child the domain models, which makes the above
rsl aslchild featuresu arealgorithm implementable. With all those

If all child features are mandatory, facilities of GME, we believe it has the best tool
remove the empty Feature~nstance from
temp3; support for feature modeling.

return the production of temp2 and GFME provides the modeling environment
temp3; for building feature diagrams with the structure
) as described in Figure 4. Figure 8 provides the

Beware that a Result is actually a two- screenshot of the GFME. Note at the lower-right

dimension data structure. If Result A has to comer is the interface to specify such attributes
as the relationship with its child-nodes for a node

FeatureInstances while Result B has n under focus (here "TransactionSubsystem") in
FeatureInstances, then the union of A and B has the environment. In the same way, we can
A and B has m*n Featurelnstances. To specify the attributes for those connections

F
«AND>> result=((F)) xCl x (C2 u E)

=((F. ro l. m12. ni3, nl., n12. nl3. nl4).

I F. mll, MI2. nl3. n2I.n
2

2).

(F. ml 1. m)2. m13.n3i, n32. n33 5.

(F.m 2i ,nil.,n12. n13. n
4

).

IF, m21, n2 .n22).
IF, m2i. n3i, n32, n33),

(F.ml, m12.m13).

CI: C2: (F. m21))

((m. . ml2.m(3) ((n I . nl2.ni3.fnl
4

)
(m2 0)) (n2In22)

(n3l. n32. n33))

Figure 5: Computing AND result

F F
<<XOR>> <<OR>>

result=((F)) result=((F)) x(C I
x(C1 uC2uE) u E) x (C2 u E)
= -... ((F)) U((F)) XC I
easy to calculate, =((F)) u((F))
omitted... u((F)) xC2L((F))

Cl:~~~x C2 Cl 2 xC2=....(it C2: C(t C2: easy to calculate,QJ ml ro, 1(nil,.n2 (m ,(i1 J2,
mi2, ni3,04) m12, m13) nt3,ni4) omitted...

rn3 n21,n22) (m2 1)) (n21,n22)

(m21)) (n3,0n3
2
, (n31. n

3 2
,

n33)) n33))

Figure 6: Computing XOR result Figure 7: Computing OR result

A A

.A A

serSubsys-e User alid steionSub eem A cc

Tr .ato~b e

CC

... .. ierV11ida1ionS . r D
Fshieruermin 8: GE'

...... Tai CtiocnSubsys ml 5T
Sran conererutneerCusi erValidation ereerA

AUU

E:conomi TrensactionS bsysiem Deitme rensactionSu system

Econo ic-rtansactio erver
Del eransction tq

Figure 8: Generic Feature Modeling Environmient

between feature nodes. The dashed lines denote [Deur02] A. van Deursen and P. Klint. Domain-
the various kinds of dependencies or constraints specific Language Design Requires Feature
to be enforced between feature nodes. Currently Descriptions. Journal of Computing and
we just generate the set of feature instances from Information Technology 10(1), pp. 1-17, 2002.
feature diagram satisfying all specified
constraints. With full control of the interpretation [GMEOI] GAMF 2000 User's Manual, Version
process (i.e., writing interpreter code via BON 2.0. ISIS, Vanderbilt University, 2001.
API), we can generate application code from
feature diagrams on demand. [Kang90] K.C. Kang, S. G. Cohen, J. A. Hess,

W. E. Novak, and A. S. Peterson. Feature-

5. Conclusion oriented Domain Analysis (FODA) Feasibility
Study. Technical Report, CMU/SEI-90-TR-21,

Feature Modeling is the core part of FODA. Software Engineering Institute, Carnegie Mellon

Our ongoing UniFrame project [Raje02] requires University, 1990.

feature modeling for building a generative
domain model. The reusable assets generated [Lees2] B.-S. Lee, B. R. Bryant. Contextual
from feature modeling after normalization, Processing and DAMqiL for
expansion and constraint checking will be Understanding Software Requirements
output into XML files. The reusable assets serve Specifications. Proceedings of COLING 2002,
two purposes: I) for clients to initiate natural- the 19ao International Conference on
language-like queries [Lee02] in the problem Computational Linguistics, pp. 516-522,2002.
space [Czar00]; 2) to provide a guideline [RajeO2] R. R. Raje, M. Auguston, B. R. Bryant,
for component providers to produce component A. M. Olson, C. C. Burt. A Quality of Service-
families in the solution space [CzarOO]. The ased Olso rk f. Crealit rice-
current practice of feature modeling remains at BasedoFraeork forare Dist
the manual or semi-automatic level, which Heterogeneous Software Components.
hinders it from becoming widely applied. This Concrrency and Cp u Practice and
paper applies normalization over the traditional Experience 14, pp. 1009-1034, 2002.
feature diagram and presents an algorithm to
generate complete feature instances from a
feature diagram under constraints. The algorithm
is adopted in GFME, which provides an
efficient, automatic FODA environment.

Acknowledgements. This research is
supported by the U. S. Office of Naval Research
under the award number N00014-01-1-0746.

References

[Bran0l] M.G.J. van den Brand, J. Heering, H.
A. de Jong, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju,
E. Visser, J. Visser. The ASF+SDF Meta-
Environment: a Component-Based Language
Development Environment. Compiler
Construction (CC '01), vol. 2027, Lecture Notes
in Computer Science, pp. 365-370, Springer-
Verlag, 2001.

[Czar00] K. Czamecki, U.W. Eisenecker.
Generative Programming: Methods, Tools, and. Applications. Addison Wesley, 2000.

EDOC 2003

Model Driven Security:
Unification of Authorization Models for Fine-Grain Access Control

Carol C. Burt Rajeev R. Raje

Barrett R. Bryant Andrew Olson Mikhail Auguston

University ofAlabama Indiana University Purdue Naval Post Graduate

Birmingham University Indianapolis School

cburt, bryant@cis.uab.edu rraje, aolson@cs.iupui.edu auguston@cs. nps. navy. mil

Abstract component models under a common meta-model for the

purpose of enabling the discovery, interoperability, and

The research vision of the Unified Component Meta collaboration of components via generative software

Model Framework (UniFrame) is to develop an techniques. This research targets the dynamic assembly

infrastructure for components that enables a plug and of distributed software systems from components

play component environment where the security developed using different component models, and

contracts are a part of the component description and explores how the quality of service (QoS) requirements,
the security aware middleware is generated by the such as security, influence the design of components and

component integration toolkits. That is, the components their compositions. The inherent complexity of such

providers will define security contracts in addition to integrations introduces significant challenges for

the functional contracts. These security contracts will controlling access to application resources (business,
be used to analyze the ability of a service to meet the customer and personal information as well as product

security constraints when used in a composition of and application features). This paper expands on our

components. A difficulty in progressing the security previous work [2, 3] to explore how Model Driven
related aspects of this infrastructure is the lack of a Architecture techniques may be used for an integration
unified access control model that can be leveraged to of the access control solutions in heterogeneous
identify protected resources and access control points at environments.
the model level. Existing component technologies utilize
various mechanisms for specifying security constraints. OMG's Model Driven Architecture (MDA) [4]

This paper will explore issues related to expressing initiative facilitates the standardization of Platform
access control requirements of components and the Independent Models (PIMs) and the transformation of

resources they manage. It proposes a platform those models to multiple Platform Specific Models for
independent model (PIM) for the access control that can implementation. One of the challenges of Model Driven
be leveraged to parameterize domain models. It also Architecture is the existence of Platform Specific
outlines the analysis necessary to progress a standard Models that do not adhere to a unified Platform
transformation from this PIM to three existing Platform Independent Model. In such cases, bridging is, at best,
Specific Models (PSMs). hand crafted and at worse, impossible. Today this is the

case for the access control models. What is needed is a

1. Introduction Platform Independent Model for access control that
forms the foundation of end-to-end access controls in
heterogeneous computing environments. This modelEnterprises are increasingly dependent upon multiple must accommodate existing Platform Specific Models

middleware technologies that enable new business while providing the flexibility for innovation in access

paradigms by weaving together legacy systems with control t hnology.

advanced technology. Component-based system

integration supports core business functionality, This paper proposes a Platform Independent Model
integrates business processes and enables companies to for access control (AC-PIM) that provides a clear
communicate with customers, suppliers, and business architectural separation between the access policy (the
partners. The Unified Component Meta-Modelparters Th Uniied Comonen Mea-Mdel management and expression of access rules), the access
Framework (UniFrame) [1] attempts to unify distributed

This research was supported by the U. S. Office of Naval
Research under the award number NOOO 14-01 -1-0746.

-I -

EDOC 2003

. decision (evaluating policy at a given point in time), and may be physical, logical, or conceptual or understood
the access control (the enforcement of access decisions). only within the context of the business application.
The paper also explores access control models adopted
via different standards organizations and outlines the 2.3 Java and the Java Community Process
transformations to their access control Platform Specific
Models. Java provides a Java"M Authentication and

Authorization Service (JAAS) [13] package that enables

2. Relevant Research and Standards services to authenticate and enforce access controls upon
users. J2EE and Java Connectors are required to utilize

The ITU-T recommendation X.812 (ISO/IEC 10181- this model. The Java Community Process (JCP) [14] is
3) [5] provides a reference model for the access control an open organization of international Java developers
that is consistent with the model proposed in this paper. and licensees whose charter is to develop and revise
There are also several consortium and de facto standards Java technology specifications, reference
that are relevant for this work. They are outlined below, implementations, and technology compatibility kits.
The detailed work will select three of these models for Java Specification Request 115 (JSR-I15) [15] is
analysis. progressing a Java Authorization Contract for

Containers (JACC). The Java Authorization Contract

2.1 Globus GRID Research for Containers (JACC) seeks to define a contract
between containers and authorization service providers

Globus [6] is a research project that focuses not only that will result in the implementation of providers for

on the issues associated with the building of use by containers.

computational grid infrastructures, but also on the
problems that arise in designing and developing 2.4 Microsoft ASP.NET
applications that use grid services. Globus is developing
basic security algorithms for secure group ASP.NET [16] supports the traditional methods of

O communications, management of trust relationships, and performing the access control (file based) and also
developing new mechanisms for fine-grained access provides an URL authorization, which allows
control. Globus authorization requirements and the administrators to provide an XML configuration that
issues that arise with current authorization technologies allows or denies an access to URLs based on the current
in GRID are outlined in [7]. user or the role [17]. Developers can explicitly code

authorization checks in their application or can take
2.2 OASIS advantage of the common language runtime's support for

declarative security. ASP.NET offers an extensible
OASIS [8] is a not-for-profit global consortium that security architecture that allows the developer to write a

drives the development, convergence and adoption of e- custom authentication or authorization server.
business standards. There are two OASIS specifications
that are of interest. They are the eXtensible Access 2.5 NIST Role-Based Access Control
Control Markup Language (XACML) [9] and the
Security Assertion Markup Language (SAML) [10]. The National Institute of Standards has proposed a
XACML is an XML specification for expressing policies voluntary consensus standard for the Role-Based Access
for information access over the Internet. SAML is an Control [18]. The role based access control (RBAC) is a
XML-based security standard for exchanging the technology that is attracting an increasing attention,
authentication and authorization information, particularly for the commercial applications, because of

its potential for reducing the complexity and cost of
2.3 Object Management Group (OMG) security administration in large networked applications.

Since the publication of the Ferraiolo-Kuhn model [19]
The Object Management Group (OMG) [11] is an for RBAC in 1992, most information technology

open membership, not-for-profit consortium that vendors have incorporated RBAC into their product line,
produces and maintains computer industry specifications and the technology is finding applications in areas
for interoperable enterprise applications. The OMG ranging from health care to defense, in addition to the
Resource Access Decision Facility (RAD) [12] provides mainstream commerce systems for which it was
a uniform way for application systems to implement a designed. The RBAC has become the de facto standard

fine-grain access control where the protected resources for access control in component and web environments.
This work is the result of the significant NIST research

-2-

EDOC 2003

and patents that they hold on the access control
technologies [20]. It is our goal for the access control In addition to the diverse vocabulary and
platform independent model to accommodate (but not specification languages utilized by the existing access

require) the NIST RBAC model, control implementations, every layer of technology has
an access control model. There are operating system

3. Access Control Unification Issues models, database and messaging infrastructure models,
and component technology models. The role-based

The first step toward Model Driven Architectures that access control (RBAC) has become popular as the

include access control parameterization and/or access control model for component platforms. RBAC

authorization contracts is the establishment of a common has enjoyed success because it is much more flexible

vocabulary. Although generalized frameworks for the and scalable than the user or group based models and is

access control have established a common vocabulary implemented in most of the available component

for operating system enforced access control models [5, platforms. It is not, however, sufficient to support many

21], there is no standard vocabulary (or several complex business scenarios. For example, the access

depending on the perspective!) for discussing the control policies may require an assessment of additional

modeling elements of the access control across environmental factors such as time, location,
heterogeneous distributed computing and component- relationships or credit limits which may supplement an

based platforms. This is immediately evident after RBAC policy. For this reason, RBAC does not provide

examining the "standards" that have been progressed to a complete unification model, rather a specific instance

enable a fine-grain access control in these platforms. of a model.

For example, the OMG Resource Access Decision
Facility has an "AccessDecision" object (ADO) that There is also an issue related to expressing the access

provides the "access decisions" based on the "security control rules. Unfortunately even when the access

attributes of a principal", a "named resource" and an control is considered during analysis and design, the
"operation" on the resource [22]. The OASIS requirements are typically expressed in a natural

* SAML/XACML access control model defines an language as business rules. That is, the focus is often to

"AuthorizationAuthority" which provides the identify the access policy, not to architect the system so
"authorization decisions" based on "attributes of a that it can accommodate dynamic policy changes. If

subject" and an "action" [9, 10]. The Java2 Enterprise (when) access policy changes, it becomes a part of the

Edition (J2EE) model defines a SecurityManager which application project to modify the software to update the

enforces the access controls and consults with an rules. This adds to the complexity of the access control

AccessController that provides the access decisions architecture and makes it impossible to change the
based on the permissions granted to a Principal (in access policy without software changes. There are

native Java this is the same model except the products which support model driven techniques,
permissions are granted to a Codebase) [1 3]. however, the access control mechanisms are typically

expressed only in the platform specific manner (via

Fortunately these models contain many application code, servlet filters, HOP interceptors, J2EE
architecturally consistent elements; for example, an deployment descriptors or product specific mechanisms

AccessDecision object, an AuthorizationAuthority, and such as graphical interfaces and proprietary API's).
an AccessController represent the same architectural Thus, there is no standard way to define the access

element in access control architecture. They do not decision points and/or policy in a platform independent

share a common reference model, however, so it is model such that it could be applied consistently across
difficult to determine without a significant analysis if multiple technologies.
they provide equivalent semantics or not. The interface
definition languages are also different. The OMG The end result is that the task of protecting business
standardizes the data formats and interfaces for resources is increasingly being pushed to the business
requesting access decisions via ISO IDL [23]; the application developer. Of course, each level of access
OASIS specification uses XML schemas [24] and the control still exists and must be administered. A single
J2EE model uses native Java [13] defined interfaces and "application" typically has many "userids" (perhaps the
data structures. As a result, a business architect and/or same, perhaps different)" that are utilized in providing
developer must be familiar with a variety of access the access control across the application. As an example,
control technologies and platform languages in order to the JAVA Blueprints Pet Store [25] has multiple userids
define the end-to-end access control in a heterogeneous that must be defined at different infrastructure levels
environment, before the application will execute successfully. This

sample explores the "best practices" in a system

-3-

EDOC 2003

. integration architecture utilizing Web Services, Java To fully realize the potential of Model Driven
Components (EJBs), Messaging (JAX/RPC, IIOP, and Architecture for the access control, an access control
JMS) and Connectors (JDBC). In addition to multiple platform independent model and the mechanism for the
userids defined in deployment descriptors, the Pet Store parameterization of domain platform independent
application also supports self-registration of userids that models with access control points must be standardized
are application specific and completely unknown to within the OMG Model Driven Architecture roadmap.

J2EE, the web server or the operating system. This The goal of the access control platform independent
"best practices" blueprint architecture documentation model (AC-PIM) is to provide an abstract view of the
suggests that e-business applications must manage access control that can be utilized at the modeling level
userids and the access control [26]. This is an example for the parameterization of domain models. This will
of the trend of pushing the access control into the enable transformations to access control platform
application layer. That is, application architects and specific models (AC-PSM) that incorporate access
developers are being forced to include user management, control points.
access policies, and programmatic access control logic
within their business software. This forces the The paper begins the analysis necessary for the
expenditure of precious business developer resources on unification of the access control models by identifying
building application specific access control the vocabulary and abstractions that can be standardized
infrastructure for managing user information and access for the purpose of model parameterization (thus enabling
control policies, thereby, increasing the cost and time a transformation to existing access control models) and
required to create the application, the common feature support to ease the secure

interoperability. Thus, the goal of the proposed research
A component infrastructure that requires exposing is the creation of a unifying AC-PIM from which

knowledge of the underlying access control model to the existing security models can be mapped and/or bridged.
business developer (via programmatic API's such as This will simplify the task of the middleware when
isCallerInRole or isUserInRole) has made it difficult to cooperation is required to meet the underlying security. hide the diversity inherent in the access control models constraints (such as the delegation of credentials and/or
when more complex access control policies are required. requesting access control decisions based on a local
Although vendor products may extend the RBAC model policy). For the UniFrame project, a goal is to identify
and/or implement proprietary mechanisms to support the work necessary for enabling the generation of access
more sophisticated access policy, in the absence of an control bridges for heterogeneous system compositions.
AC-PIM as a reference model for access control, the That is, we wish to provide the foundation for new
task of understanding and comparing product features research projects in using the generative techniques for
becomes difficult. The task of creating and maintaining access control and secure interoperability.
consistent policies is also very difficult while a
consolidated auditing is near impossible. An additional goal is to define a PIM that is simple

enough for the business people to understand. This will
Access policies may often change and/or be governed enable meaningful communications between the

by the legislation that differs from location to location, business system architects and the security architects by
Business developers should not be required to providing appropriate abstractions and a vocabulary.
understand those policies but unfortunately this is what Thus, a person should not need to be a security domain
happens during today's application development expert to understand the concepts of the Access Control
process. These issues limit the ability of a developer to Platform Independent Model. For this reason, if the
use components in dynamic system compositions where security community uses multiple terms for similar
the access control policy may be significantly different concepts, the choice of this work is to use the one that is
from what was provided in the original usage of that most likely to be familiar to a business person, or to
component. We will explore how the proposed model introduce a new term that can be mapped to the more
shifts the majority of this work to the provider of the technical security term during transformation.
infrastructure authorization service software and discuss
how future component infrastructure could assist in It is also a goal of this work to unify existing access
assuming more of this responsibility, control mechanisms while providing abstractions that

enable future innovation. Hence, the proposed model

should be flexible enough to support the authorization

4. Goals for Model Driven Access Control requirements of the future infrastructures such as the
Grid. To do this, a Model Driven Access Control must
support an architecture where access decisions are

-4-

EDOC 2003

. architecturally separate from business logic. Therefore, design patterns and the mappings that enable true

this paper challenges the current trend of pushing Enterprise Security Services to be integrated at all levels

knowledge of the underlying access control model into of computing infrastructure (Security related design

application logic when programmatic access control is patterns for scalability which can be utilized as part of

required. model transformation were discussed in earlier work
[2]). Model Driven Security means allowing the

5. Model Driven Access Control security contracts to be modeled as a part of the
component contract, thus enabling the security context

A model transformation occurs when models are to be managed end-to-end by the UniFrame

refined and details are added for the purpose of focusing infrastructure. This will enable manageable access

on a particular implementation technology or an aspect control and auditing regardless of whether the system

of the domain model. Model transformations are used to composition was statically or dynamically generated.

document different "levels of abstractions",
"viewpoints" or "aspects" of an information system. 6. Proposed Platform Independent Model
Models that comply with a specific meta-model may
utilize generative techniques for the transformations; There are five principles that this model provides in
leveraging information that the generator knows support of Model Driven Access Control:
regarding the target implementation platform and/or
parameterizations provided by the software architect [4]. 1) Access Control Points should be identifiable

via parameterization of the domain PIMs with a
If Model Driven architecture is to reach it's full single model element.

potential, the quality of service issues must have 2) Protected Resources should be identifiable via
Platform Independent Models. For the security access the parameterization of the domain PIMs with a
control models, that means that an AC-PIM must be single model element.
explored from which JAAS, RAD and SAML/XACML 3) An access policy should be defined, developed
(and others) can be derived. This ensures that business and managed separately from the application
people and software architects could utilize common business logic. Access policy rules and access
vocabulary and syntax to define the access control policy models must be able to evolve without
architectures. This paper supports the development of any modification of the business software.
an access control PIM expressed in UML that can be the 4) The policy model (role-based, user-based,
catalyst for the unification of the existing access control code-based...) should not be exposed to the
PSMs. business application developers. That is, the

business logic should have absolutely no
The definition of this model is critical to support the knowledge of the access control model utilized

development of MDA tools that generate security access to make access decisions.
control points as a part of the infrastructure that bridges 5) The access control platform independent model
technology platforms and hopefully will provide a (AC-PIM) must provide abstractions that are
catalyst for innovations in the access control standards (as much as possible) consistent with the
that push much of the application level access control existing commonly used Platform Specific
down into infrastructure containers and/or Models for access control. If not, it will not be
communications layers. Finally, the adoption of a acceptable to the user or vendor community
common model will enable the migration of existing and the work to produce it will be purely
access control implementations to a more consistent academic with no long-term impact.
access control infrastructure. Thus, it should be
possible to standardize using the experience-based

-5-

EDOC 2003

Guard The Guard is responsible for

enforcing access decisions

(access control.

I c~su ts I onsltsThe Guard may consult witha
1 1 consults 1 1 consults LoginW.anager tc authenticate

the User and/or an AccessManager

to get decisions regarding allowing
AccessManger & access to the protected resource.

oginManager Guard elements are used to

lol tO Grd Iparameterize

a advises I. I 1 d . .. I business models

Login~anae AcsManager

wauthenticate :boolean -accessAlowed t :boolean

~Resorld
I_.. I... I... 1... U L S r n

1 has4

"A Resourceld

1. represents any

AuthenticationServ4 Attribut*Server AuthorizationServer orsc al

or conceptual

usecattr():SecAttributes
resource that may

need to be protected.
+userlnRole0):boolean Examples are:

II~ ~ ~o~tA l ~~consults appropriate feiallnhfe., inutneod.adtabase...
i ~files, databases.

consuts apropuatefield sn a database,

medical record.

Authentication Model
launch button

is omitted; Dynam cContextSe-e I
Resourceld

DecisionAuthority elements are
The access control used to annotate

mode asume busines models

the Guard has S . I

authenticated the OptionallyI consults appropriate

User to annotate

business .. 0.

sophisticated Acces.Policy~aluator AccessPolicy

security context -Name:String

-6-l

SothunttyationxokA tiUser e

-taieeStringg0..- -ac-id:Strinn

-tokenruOpaye

FDm iguroet 1-P atcrm Ine nd en M ode Ir RolessC nrl(CPM

Cosrie@to~l

EDOC 2003

* To support these principles, we must explore the process or application, or a concept such as "emergency
minimal knowledge that must be provided via room patient" or "psychiatric record". It is this "id"
parameterization during modeling. This includes: that represents the resource and is the target when

requesting access decisions. The actual "resource" is
1. Identification of Resources that might stewarded by an application (or a real person in the case

require protection (note - the architect may where it is a physical resource such as an x-ray film).
not know if a resource is protected and is
only giving it an identifier so that the A Guard is inserted at every point within the
security policy can be defined at some future application (or infrastructure) architecture where access
time). control checks should be made and enforced. The

2. Identification of the points within the decision regarding where to insert one or more Guard(s)
application architecture where the access will be made during the parameterization of the domain
control checks should be made. model prior to transformation to a platform specific

3. Identification of the application specific technology for the components or system composition.
context /attribute information that might be Some technology platforms will provide Guards as part
needed at the point where an access control of the infrastructure (thus their meta-models already
check is made (for example, withdrawal include one or more Guards). Others will require that
amount or credit limit or a relationship Guards be manually added. Guards may be implemented
between a requestor and the information by the operating system(s), messaging systems,
being requested). infrastructure services, middleware, component

containers, software components or applications. The
The proposed AC-PIM model is shown in Figure 1. Guard is responsible for ensuring that the user is

Although additional details related to the semantics and authentic - that they are indeed who they claim to be
division of responsibility will need to be finalized in (the authentication process is not covered by this paper -
future work, this paper presents the initial design for the it is expected that any well accepted and popular
Access Control Platform Independent Model that will be methods of authentication would suffice) and that theO used by the UniFrame team to progress unification of user is authorized to access the protected resource. A
heterogeneous access control solutions. This model will Guard is typically a software piece protecting an
evolve with that work. The modeling elements that electronic resource, but could also be a person who acts
represent the information that must be defined as on the advice of software. The most important fact to
parameterization of the domain model as discussed understand is that it is the Guard and not the
above are: authorization service that is responsible for enforcement

of the access control.
I. The PIM modeling element (object) that

represents the resource and manages the The Resourceld and Guard are the objects that will
identity is Resourceld. Note that there is always be required to parameterize both domain models
not a model element for the protected as developed by the business system architect, and the
resource as it is outside the scope of the AC- infrastructure component models used in the model
PIM. It is only present "by reference" in the transformation. The domain models must identify the
model. resources that need to be protected and they must

2. The PIM modeling element (object) that identify the points within the domain model where
represents the access control points is a Guards should be activated. This parameterization will
Guard. be utilized as a part of the model transformation to

3. The PIM modeling element (object) that ensure that the access control checks are placed into the
supports a dynamic use of the context system at the appropriate points. In a similar way,
information in making the access decisions infrastructure that enables dynamic system compositions
is a DynamicContextServer. (via the Web for example) must also support the

dynamic identification of the protected resources and the
A Resourceld may represent any physical, logical or insertion of Guards to protect them.

conceptual resource or a group of resources. For
example, a Resourceld may represent a panel or button It is also anticipated that that some sophisticated
on a GUI, a feature of a cell phone, an operating system, business applications will require the ability to plug-in

*dn individual machine, an instance of a field in a file or custom context servers that augment the infrastructure
database, an entire file or database, a C method provided security services with an application specific
invocation, an RMI or CORBA operation on an object, a security context. This plug-in ability is a requirement of

-7-

EDOC 2003

* an implementation of a compliant access control system. than authorization servers. The LoginManager has

The DynamicContextServer provides the interface to access to SecurityContextServer(s) for obtaining

support this feature. Architecturally this context server additional security context information if required

remains separate from the business logic and could be during the process of authentication.

developed independently.
The AccessManager's primary responsibility is to

For the purposes of enabling Model Driven Access provide advice to the Guard on whether or not the User

Control (via MDA tools), the remainder of the access should be should be allowed access to the resource(s)

control PIM shown in Figure 1 does not need to be identified by the Resourceld. The AccessManager has

exposed. We are, however, suggesting that the full access to one or more AttributeServer(s) and one or

model should be progressed as a mechanism for more AuthorizationService(s).

understanding and unifying the behavior of existing

access control models and providing a consistent model For a typical initial access request, the Guard will

that can be used as a basis of a reference model and consult with the LoginManager to get advice on whether

vocabulary for future access control model evolution, or not to trust the identity of the requestor and then

For that reason, we define the full model in this paper. consult with the AccessManager to determine if an

Now we will explore the architecture of the Access access should be allowed to the requested resource(s).

Control Platform Independent Model and how it Subsequent requests for the resources from the same

supports the principles we outlined, resource (typically within the scope of a session) would

result in consultation only with the AccessManager. The

Consistent with most of the access control systems of Guard may also decide to trust an authentication token

today, a User may be either a person or a software obtained by another Guard, which has been made

component. The User is simply the requestor of access available to it, and omit the consultation process with the

to a protected resource. When a user makes such a local LoginManager. In this case, it would only consult

request, a Guard makes and enforces an access decision with a local AccessManager. It is also possible that the

* regarding whether to allow the User to access the Guard may determine that the resource is not protected

protected resource that may be information or at all and simply allows access to the resource without

application feature(s). A Resourceld represents this further consultation with either manager. Of course, a

protected resource. Guard may be disabled or removed which will allow
access to all users, or may be inserted with a policy that

The Guard has access to a local LoginManager and causes it to deny access to all users.

AccessManager for consultation purposes. The

LoginManager and AccessManager are inserted into the It is important to understand that a Guard has the

model as locality constrained objects that provide an authority to accept or reject the advice of LoginManager

architectural support for location transparency and to and/or AccessManager(s) - although in practice this is

address the need for high performance access control typically not a good idea. This provides the flexibility to

solutions; for example an implementation may support insert custom Guards in locations where normal

caching of the information stored in shared repositories application access control mechanisms must be disabled

and consolidation of multiple sources of the security (such as emergency rooms where the information

information. These objects also support a unified normally required to make decisions may not be readily
application-programming interface (API) for requesting available) or to temporarily deny access to everyone

security authentication and authorization. This provides without any modification of the access policy. It is also
a plug-in point for vendors to integrate their solutions important to note that the Guard does not have any

into heterogeneous environments, knowledge of the access policy model. For example, if

the underlying policy is role based access control
The LoginManager's responsibility is to provide (RBAC), the guard is not aware of the roles that may be

advice to the Guard on whether or not the requestor is required to access a resource. The Guard simply asks if

who they claim to be. To do this, it uses an an access is allowed or not by consulting with the

Authentication Service. Authentication Services may AuthorizationService. A single implementation of a

utilize diverse authentication technology including guard may therefore be used with multiple underlying

useridipassword, X509 certificates, ticket-based access control models. This also supports our principle

(Kerberos), or token-based authentication. We will not that the policy model- (role-based, user-based, code-. explore a common authentication model in this paper based, etc.) should not be exposed to the business

except to note that this technology is significantly more application developers (as Guards will be provided by

mature in terms of allowing pluggable authenticators the application developers in environments where tools

-8-

EDOC 2003

* are not yet available to generate them). This is in In the AC-PIM, the concept of AccessPolicy is
contrast with current J2EE/EJB and Web Server abstract. An AccessPolicy consists of one or more Rules
programmatic security facilities which expose the role- that are constructed using the SecurityContext. An
based access control model by forcing a Guard to know AccessPolicy is associated (by name) with a Resourceld.
the roles that are required and call The reason for requiring that AccessPolicy is associated
"EJBContext::isUserlnRole" or "HTTPServletRequest:: "by name" to the Resourceld is to enable maximum
isCallerinRole" to make access decisions. The scalability. By using this indirection, a policy can be
insertion of a local AccessManager into these managed independently and associated with many
architectures removes this requirement by allowing the different resources. This is an expansion of the design
Guard to call "AccessManager::access_allowed", pattern that enabled RBAC to scale (which creates

"roles" that are assigned to Users and creating policy
The AuthorizationServer, DecisionAuthority or based on roles instead of individual users). This is

AccessPolicyEvaluator(s) requires the security context more scalable than current deployment descriptors that
information. The AccessManager must have this context require a redefinition of access policy rules in the
information before consulting with an deployment descriptor for each protected resource.
AuthorizationServer. Examples of the security context
are security attributes such as groups, roles or access ids. 7. Transformation of the AC-PIM to
Other examples of the security context are dynamic Existing Platform Models
properties (such as the current balance on a checking
account) that may be necessary to make an authorization Figure 2 provides an overview of the models and
decision. Such dynamic properties would be provided aspects that must be considered as we look at the
via a DynamicContextServer. By placing this in the transformation of the AC-PSM to an AC-PSM for three
access control architecture, a common design pattern is existing Platform Specific Models.
created that maintains the separation of the application
logic and the access control logic and allows access 1. The OASIS Access control model as defined in
policy to be evolved separate from the underlying Security Assertion Markup Language (SAML)
business logic. and eXtensible Access Control Markup

The Authorization Server consults an Access Language (XACML).
The Authoritiwhonseroler t cominslth an ccess 2. The OMG access control model as utilized byDecisionAuthority whose role is to combine the access the Resource Access Decision Facility (RAD).

decisions made by the PolicyEvaluators where multiple 3. The Java access control model as defined in the

policies are in effect. For example, there may be a legal Java Authentication and Authorization Service

policy and an administrative policy that disagree. It. (JAAS).

would be the AccessDecisionAuthority that would be
responsible for resolving any such conflicts. Simple XACML is an XML specification for expressing
AccessDecisonAuthority's would require consensus; policies. This specification defines an XML schema for
more complex authorities might understand precedence an extensible access control policy language. As a
rules. A PolicyEvaluator is responsible for evaluation of result, it defines a standard vocabulary for the domain of
access policy. A PolicyEvaluator typically can evaluate access control policy. SAML is an XML-based security
any policy that follows a particular policy model (for standard for a protocol to exchange the authentication
example, role-based, access control lists or clearance and authorization information. This specification also
based). Alternatively there may be PolicyEvaluators defines the syntax and semantics for the XML-encoded
created for particular domains such as legal policy or SAML assertions about authentication, attributes and
administrative policy. authorization.

-9-

EDOC 2003

AC-PIM JAVA /J2EE JAAS OMG RAD OASIS SAML/
(JAAS PSM) (RAD PSM) XACML

(XACML PSM)
Access Control Policy Based Principal Based Access Policy Based Access Policy Based Access
Model Control Control Control
Model Language UML Java Interfaces ISO IDL W3C XML
Description of An AccessManager An AccessController An A Policy Decision
Access Decision uses a determines if the Subject AccessDecisionObjec Point (PDP) uses
Model supported DecisionAuthority to associated with the t is passed the AuthorizationPolicy

make a decisions based AccessControlContext ResourceName, the (gathered via
on input from has the required requested operation PolicyRetrievalPoint)
AccessPolicyEvaluator permission. on the resource, and and evaluates it
s that may evaluate SecurityAttributes. It and makes an access
multiple policies. Principals associated locates the decision which is

with the subject are PolicyEvaluators and provided via an
Named Policy is matched against an DecisionCombinator. AuthorizationAssertio
associated with application's required One or more policies n
Resourcelds roles and permissions may be evaluated and

for the action are combined by the
checked. combinator. Named

Policy is associated
with Resoucelds.

Policy Format Not defined - Policy is XML - Policy is defined Not defined - Policy Policy is expressed via
standard named and associated via grant statements in is named and XACML statements as

with resources "by deployment descriptors associated with AuthorizationAssertio
name". Policy format that grant Permissions resources "by name". ns XACML provides a
is encapsulated and is for actions to Security Policy format is policy exchange
not standardized Principals (user/role) encapsulated and is language (in XML)

not standardized
Access Decision The Guard calls The client sets The client (serving as
API provided AccessManager:: AccessControlContext a Guard) calls

accessallowedO by invoking operation AccessDecision::
via Subject.doAs access allowed

Alternative AttributeServer:: EJBContext:: HttpRequest::
native API userlnRole IsUserlnRole isCallerInRole
Infrastructure Inserted via business J2EE Web and EJB CORBA Security Web Container and
Guards (access model parameterization Containers and J2EE Service / CSIv2 may Servlet container is a
control points) and generated by MDA Connectors use JAAS offer guard via SAML

tools Subject.doAs api interceptors. PolicyEnforcementPoi
nt (PEP)

Application Guard may be inserted Developer may insert Developer may create Developer may insert
Guards (access by developers at access decision point a guard that uses the SAML PEP in Valves
control points) identified access via Subject.doAs -java AccessDecisionObjec or Filters or

decision points runtime then is used as t:: accessallowed to application code.
guard get decisions.

What the Guard insertion points, References to external ResourceNames; References to external
application Resourcelds; actions resources accessed actions on Resource; resources accessed
components must on Resource; References to inter- Optionally: custom References to inter-
identify Optionally a custom component calls made DynamicAttributeSer component calls made

SecurityContextService Ids of all role names if vice and/or custom Ids of all role names
I isUserInRole is used PolicyEvaluator used in isCallerInRole

Figure 2 - Contrasting the AC-PIM with existing Platform Specific Model

-10-

EDOC 2003

0 The JavaTM Authentication and Authorization Service

Table 1 indicates the conceptually similar modeling (JAAS) is a package that enables services to authenticate

elements that need to be explored in an AC-PIM to and enforce access controls upon users. JAAS

XACML Platform Specific Model transformation: authorization extends the existing Java security
architecture that uses a security policy to specify what

AC-PIM XACML-PSM access rights are granted to executing code. JAAS

Guard Policy Enforcement Point authorization augments the existing code-centric access

AccessManager (PEP) controls with new user-centric access controls.

LoginManager Permissions can be granted based not just on what code

AuthenticationServer AuthenticationAuthority is running but also on who is running it. Permissions

AttributeServer AttributeAuthority can be granted in the policy to specific Principals.

AuthorizationServer AuthorizationAuthority Table 3 indicates the conceptually similar modeling

DynamicContextServer PolicyinformationPoint elements that need to be explored in an AC-PIM to
DecisionAuthority Policy Decision Point (PDP) JAAS Platform Specific Model transformation:
Resourceld URI reference

Table 1: Transformation to Key XACML Elements
AC-PIM JAAS-PSM

Java and OMG CORBA share a security specification Guard SecurityManager

for secure interoperability. Common Secure AccessManager Subject

Interoperability Specification, Version 2 (CSlv2) [27] LoginManager LoginContext

supports the protocol necessary for infrastructure and AuthenticationServer LoginModule

applications to obtain the security context information AttributeServer Subject

necessary to leverage the Resource Access Decision AuthorizationServer AccessController

Facility (RAD) for fine-grain access control. RAD DynamicContextServer
provides a uniform service to assist in implementing DecisionAuthority
infrastructure or application level access control where Resourceld Resource-ref
the protected resources may be physical, logical, or Table 3: Transformation to Key JAAS Elements
conceptual or understood only within the context of the
business application. RAD was designed for use in 8. Conclusion
multiple technology environments and addresses the
problems of enterprises who have access control policy This paper proposes that access control patterns (in
that is defined by privacy and confidentiality legislation the form of a platform independent model) be utilized as

(such as healthcare, telecommunications, and finance) a part of the component architectures to simplify the task
These domains demand more sophisticated access of generating middleware that assumes the responsibility
control policies than what can be provided by for the access control decisions that previously were
infrastructure security. tedious (or near impossible) to protect without the

involvement of the application logic and the application
Table 2 indicates the conceptually similar modeling developer. It proposes a Platform Independent Model

elements that need to be explored in an ACPIM to RAD that can be leveraged in a Model Driven Approach.
Platform Specific Model transformation: While the full definition and standardization of such a

security model is beyond the scope of this research
ACPIM RAD-PSM project, this initial investigation indicates that the
Guard RAD client development of such a model is feasible. We are
AccessManager hopeful that this research will lead to the standardization
LoginManager of an Access Control Platform Independent Model (AC-
AuthenticationServer AuthenticationService PIM) under the OMG MDA process.
AttributeServer SecurityContext
AuthorizationServer AccessDecisionObject 9. Future Work
DynamicContextServer DynamicAttributeService
DecisionAuthority DecisionCombinator Future work is planned to examine the problems

SResourceld ResourceName associated with the protection of the fine-grain features
Table 2: Transformation to Key RAD Elements and information resources of a typical Web-enabled

business application. The case study, to be created for

-|11-

EDOC 2003

O this purpose, will examine a Web-enabled business 2002 Southeastern Software Engineering Conference, pp. 521-

application architecture including a Web tier, an 529.

application logic tier, and an enterprise resource tier.Since an application may require that access to a 13] Carol C. Burt, Barrett R. Bryant, Rajeev R. Raje, Andrew
Olson, Mikhail Auguston. 2002. Quality of Service Issues

resource in the enterprise resource tier be controlled Related to Transforming Platform Independent Models to
based on the credentials of the Web user, it will explore Platform Specific Models. Proceedings of EDOC 2002, the 6 "h
the authorization and access control issues related to IEEE International Enterprise Distributed Object Computing
managing the security context across a multi-tier Conference, pp 212-223.
environment. A model-based solution will be proposed
for the UniFrame project. [4] Object Management Group. Model Driven Architecture

Guide. Technical Report. Document # omg/2003-05-01.

This case study will be used to validate the AC-PIM Framingham, MA: Object Management Group. May 2003.

by completing the semantics of the models and the [5] ITU-T Recommendation X.812 (1995) 1 ISO/IEC 10181-3:
transformation to existing models. The proof of concept 1995, Information Technology-- Open Systems
will take a well-known application (the Java Blueprints Interconnection -- Security Frameworks for Open Systems --
Pet Store), expressing the Pet Store domain model in Access Control.
UML and parameterizing it with the AC-PIM by
identifying Resourcelds and inserting Guards that [6]http:://www.globus.org.
conform to the AC-PIM. A transformation of the model
to the associated PSM that includes access control will [7] K. Keahey, V.Welch. 2002. Fine-grain Authorization for

then be progressed. An analysis of this manual Resource Management in the Grid Environment. Proceedings

transformation will serve as the foundation of code of Grid2002 Workshop.

generators that mechanize the process, A final goal is [8] http://www.oasis-open.org.
to progress a standard Platform Independent Model for
Access Control within the OMG community that can be [9] OASIS. 2003. The XACML 1.0 Specification Set,. leveraged by Model Driven Architecture tools. available via http://www.oasis-open.org.

We are currently involved in research in the use of [10] OASIS. 2002. Security Assertion Markup Language
formal methods for quality of service analysis in version 1.0, available via http://www.oasis-open.org.
component-based distributed computing [28] and would
like to investigate how formal methods might be [II]htp://www omg org.
leveraged in the access control domain. In addition, we [12] Object Management Group. 2001. Resource Access
hope to define future research projects that collaborate Decision Facility. formal/2001-04-01 (full specification)
with groups doing natural language research and formal/2001-04-02 (OMG IDL). Available via
experiment with natural language processing of the http://www.omg.org/technologyldocuments/formal/
access control requirements [29]. We also hope to omgsecurity.htm.
collaborate with research groups that are using Aspect
Oriented computing in Model Driven Architecture [13] Sun Microsystems. 2002. JavaTM Authentication and

projects to determine if weaving techniques can be used Authorization Service (JAAS) is part of Java 2 Platform

to introduce access control logic during model Enterprise Edition Specification vl.4, Available via ftp from

transformation and at system composition time. www.java.sun.com. Sun Microsystems.

[1 4] http://www.jcp.org.
10. References

[15] Java Community Process. 2002. JSR 115- JavaTM

[I] Rajeev R. Raje, Barrett Bryant, Mikhail Auguston, Andrew Authorization Contract for Containers. Available for

Olson, Carol Burt. 2001. A Unified Approach for the download from http://www.jcp.org.
Integration of Distributed Heterogeneous Software
Components, Proceedings of the 2001 Monterey Workshop on [16] http://www.microsoft.com.
Engineering Automation for Software Intensive System [17] http:l/www.gotdotnet.com/teamfclr/aboutsecurity.aspx.
Integration, pp: 109-119.

[2] Carol C. Burt, Barrett R. Bryant, Rajeev R. Raje, Andrew [18] D. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, R.
Olson. Mikhail Auguston. 2002. Quality of Service (QoS) Chandramouli, 2001. A Proposed Standardfor Role Based
Standardsfor Model Driven Architecture. Proceedings of the Access Control, ACM Transactions on Information and

System Security, vol. 4, no. 3.

-12-

EDOC 2003

. [19] D.F. Ferraiolo and D.R. Kuhn 1992. Role BasedAccess CORBA® is a registered Trademark of the Object
Control. 15th National Computer Security Conference Management Group(OMG). CCM, UML, MOF and MDA

are trademarks of OMG.
[20] Numerous references are available at
http://csrc.nist.gov/rbac/]. JAVA, J2EE, and EJB are trademarks of Sun Microsystems.

[21] M. Abrams, J. Heaney, 0. King, L. J. LaPadula, M. NET is a trademark of Microsoft Corporation.
Lazear, and I. Olson. 1991. A Generalized Framework for
Access Control: Towards Prototyping the Orgcon Policy, In Other trademarks, which may be used in this document, are the

Proceedings of National Computer Security Conference, pp. properties of their respective owner corporations.
257-266.

[22] Beznosov, Deng, Blakley, Burt, Barkley. 1999. A
Resource Access Decision Service for CORBA-based
Distributed Systems. ACSAC (Annual Computer Security
Applications Conference).

[23] International Standards Organization (ISO). ISO-IEC
14772-2. IDL as standardized by the Object Management
Group.

[24] World Wide Web Consortium (w3c). Extensible Markup
Language (XML) is text format derived from SGML (ISO
8879). Available from www.w3c.org/XML.

[25] Sun Microsystems Blueprints program. Pet Store version
1.3.1 01 available for download from
http://java.sun.com/blueprints.. [26] Sun Microsystems. Designing Enterprise Applications
with the J2EE Platform. Chapter on Pet Store Security
Architecture. available online from
http://java.sun.com/blueprints

[27] Object Management Group. 2001. Common Secure
Interoperability version2 - Chapter 24 of CORBA/IJOP
specification. formal/2002-12-06. available via
http://www.omg.org/technology/documents/formal/omg-secur
ity.htm.

[28] Chunmin Yang, Barrett R. Bryant, Carol C. Burt,
Rajeev R. Raje, Andrew M. Olson, and Mikhail Auguston,
2003. Formal Methods for Quality of Service Analysis in
Component-Based Distributed Computing to appear in
Proceedings of IDPT 2003, the Seventh World Congress on
IntegratedDesign and Process Technology.

[29] Chunmin Yang, Beum-Seuk Lee, Barrett R. Bryant, Carol
C. Burt, Rajeev R. Raje, Andrew M. Olson, Mikhail
Auguston. 2002. Formal Specification of Non-Functional
Aspects in Two-Level Grammar, Proceedings of the UML
2002 Workshop on Component-Based Software Engineering
and Modeling Non-Functional Aspects (SIVOES-MONA),
http://www-verimag.imag.fr/SIVOES-MONA/uniframe.pdf.

0

-13-

SFrom Natural Language Requirements to
Executable Models of Software Components

Barrett R. Bryant, Beurn-Seuk Lee, Fei Cao, Rajeev R. Raje, Andrew M. Olson
Wei Zhao, Jeffrey G. Gray, Carol C. Burt Indiana University-Purdue University-

University ofAlabama at Birmingham Indianapolis
{bryant, leebs, caof zhaow, gray, cburt} {rraje, aolson}@cs.iupui.edu

@cis. uab. edu

Mikhail Auguston
Naval Postgraduate School
auguston@cs. nps.navy.mil

Abstract Domain logic is typically expressed in natural
language before a model is developed. Standardization

The UniFrame approach to component-based of domains and their associated components is being

software development assumes that concrete undertaken by the Object Management Group (OMG) 4.

components are developed from a meta-model, called To facilitate the MDA approach to be used in practice,
the Unified Meta-component Model, according to automated tools are needed to develop the domain-

standardized domain models. Implicit in this specifications from their requirements in natural

development is the existence of a Platform Independent language as well as to enable transformation from PIMs

Model (PIM) that is transformed into a Platform into PSMs. Furthermore, if MDA is to be used for

Specific Model (PSM) under the principles of Model- constructing distributed real-time embedded (DRE)
Driven Architecture (MDA). This position paper software systems, then the models must consider not
advocates natural language as the starting point for only functional aspects of domain logic, but also non-

developing the meta-model and representative domain functional properties, such as Quality-of-Service (QoS)
models. The paper illustrates how natural language is requirements (e.g., latency and bandwidth requirements
mapped through the PIM to PSM using aformal system on a distributed video streaming system [23]). QoS

of rules expressed in a Two-Level Grammar (TLG). attributes are not currently considered in the MDA

This allows software requirements to be progressed framework.
from domain logic to the implementation of UniFrame [31] is an approach for assembling

components. The approach provides sufficient heterogeneous distributed components, developed
automation such that components may be modified at according to MDA principles, into a distributed
the model level, or even the natural language software system with strict QoS requirements.
requirements level, as opposed to the code level. Components are deployed on a network with an

associated requirements specification, expressed as a

1. Introduction Unified Meta-component Model (UMM) [30] in the
Two-Level Grammar (TLG) specification language [4].
The UMM is integrated with generative domain models

Model-Driven Architecture (MDA) [12] is an and generative rules for system assembly [10], which
approach that separates the essence of an pplication may be automatically translated into an implementation
from the specific middleware platform to which it is that realizes an integration of components via
deployed. The basic approach is to define Platform generation of glue and wrapper code. Furthermore, the
Independent Models (PIMs) that express the application glue/wrapper code is instrumented to enable validation
logic of components conforming to some domain (e.g., of the QoS requirements [32].
mission-computing avionics, safety-critical medical This paper describes a unified method of expressing
devices) and then to derive Platform Specific Models dormin models in natural language, translating these
(PSMs) using a specific component technology (e.g. into associated logic rules for that domain, application

CORBA , J2EE', and .NET3).

___2 J2EE- Java 2 Enterprise Edition, http://java.sun.com/j2ee
'CORBA - Common Object Request Broker Architecture, 3 http://www.microsoft.com/net
http://www.corba.org 4 http://www.omg.org

. of the logic rules in building MDA PIMs, and XML to specify the requirements, XML attributes
maintaining these rules through development of PSMs. (meta-data) can be added to the requirements to

The complete mapping takes place using a formal interpret the role of each group of the sentences during

system of rules expressed in TLG. This allows software the conversion. The information of the domain-specific

requirements to be progressed from domain logic to knowledge is specified in XML. The domain-specific

implementation of components. It also provides knowledge describes the relationship between

sufficient automation such that components may be components and other constraints that are presumed to

modified at the model level, or even the natural exist in requirements documents or too implicit to be

language requirements level, as opposed to the code extracted directly from the original documents [22].
level. Section 2 describes our previous work with TLG The XML representation produced for the above
and its use as a specification language. The application specification is:

of this to MDA is discussed in section 3. Finally, we
conclude in section 4. <class title = "Mode" meta = "mode">

<class title = "wait state" meta

2. From Natural Language Requirements = "submode">

to Formal Models <paragraph meta = "pre-cond">
<sentence>

Host is powered up and all
To achieve the conversion from requirements software subsystems are

documents to formal models requires several levels of available
conversion, as shown in Figure 1. First, the original </sentence>
requirements written in natural language are refined as </paragraph>
a preprocessing of the actual conversion. This <paragraph meta = "pre-exec">
refinement task involves checking spellings, <sentence>
grammatical errors, consistent use of vocabularies, and Patient with IV/pump
organizing the sentences into the appropriate sections. running is placed onto the
The requirements are expected to be organized in a host
well-structured way, e.g. as laid out in [36] or as a </sentence>
collection of use-cases [16], and be part of an <sentence>
ontological domain [21]. Once they are structured in Pump cable is connected to
this way via human preprocessing, the remainder of the the host
conversion occurs automatically. If modifications to </sentence>
requirements are needed, these modifications should be </paragraph>
made to the requirements already preprocessed, not the <paragraph meta = "exec">
original ones. Since we are allowing for specification of <sentence>
components that will be deployed in a distributed HOST now provides power for
environment, Quality-of-Service attributes are also pump
specified [38]. </sentence>

An example requirements specification from [19] is </paragraph>
given below. This is a small piece of the Computer </class>
Assisted Resuscitation Algorithm (CARA) Infusion
Pump Control System [37]. </class>

The host is powered up and all A knowledge base is built from the requirements
software subsystems are available, document in XML using natural language processing
The pump software system is now in (NLP) to parse the documentation and to store the
the wait operating state. The patient syntax, semantics, and pragmatics information. Each
with IV/pump running is placed onto sentence is read by the system and each sentence is
the host. The pump cable is connected parsed into words. At the syntactical level, the part of
to the host. The host now provides speech (e.g. noun, verb, adjective) of each word is
power for the pump. determined by bottom-up parsing, whereas thepart of

sentence (e.g. subject, object, complement) of each
Next, the refined requirements document is word is determined by top-down parsing [17]. The

automatically converted into XML5 format. By using corpora of statistically ordered parts of speech

(frequently used ones being listed first) of about 85,000

XML - eXtensible Markup Language - http://www.w3c.org/xml

Preprocessing

Ontology, Formal restrictions

NReurmnsDcmn Informal

t Do DFormal

Figure 1. Natural Language Requirements Translation into Executable Models

words from [34] are used to resolve syntacticambiguities in this phase. Also, elliptical compound
phrases, comparative phrases, compound nouns, and .__.J-0l e~el
relative phrases are handled in this phase as well. Theknowlede,, base• for-the abov.e exam ple is sh'ownr in "'- " ", ,,..''
Figue 2. /

Onceoheekowledeabae isconstucte, it

content can. be qure nN.Nx, th-e kn.owedge,,, Watstt pe
base is converted, with the domain-specific "• • =..knowledge, into TLG by removing contextual
dependencies in the knowledge base "[20]. TLG is •• "H•' P•
used as an intermediate representation to build a
bridge between the informal knowledge base and the.
formal specification language representation. The
name "two-level" in TLG comes fromthe fact that Figure 2: Knowledge RepresentationabTLG consists of two contextl-free grammars

interacting in a manner such that their combined
computing power is equivalent to that ofa Turing

machine. Our work has refined this notion into a set class Mode

of domain definitions and the set of function

definitions operating on those domains. In order to instance variables

support object-orientation, TLG domain declarations private host Host

and associated functions may be structured into a private pump Pump

class hierarchy supporting multiple inheritance. The private patient : Patient

TLG specification produced for this example is: private power : Power

class Mode. operations

wait state
Host is powered up, public waitState : () => ()

Pump SoftwareSystem is waitState () ==

available, host poweredUp (;

Patient with IVPump running pump . softwareSystem ()

is placed onto Host, . available 0;

Pump Cable is connected to Host, patient . ivPump ()

Host provides Power for Pump. . running ();
... patient . placedOnto (host);

end class Mode. pump . cable ()
connectedTo (host);

Host, Pump, SoftwareSystem (an attribute of host . provides (power, pump);

Pump), Patient, IVPump (an attribute of Patient),

Cable (an attribute of Pump), and Power have all

been identified as objects in the analysis. In TLG,
object and class names are denoted by being end class Mode

capitalized (and are in fact not distinguished, i.e., an
object may be denoted using the corresponding class The VDM++ class uses one instance variable to

name, as an implicit declaration). Verbs and other represent each object in the TLG specification. This

words are included in TLG to make up functions, e.g. VDM++ specification may be converted into the

"is powered up," "is available," etc. UML model shown in Figure 3. Using the XMI7

As a final step in this process, the TLG code is format, not only the class framework but also its

translated into VDM++, an object-oriented extension detailed functionalities can be specified and

of the Vienna Development Method [I1], by data and translated into OCL (Object Constraint Language)

function mappings. VDM++ is chosen as the target [35].

specification language because VDM++ has many

similarities in structure to TLG and also has a good 3. Integration with Model-Driven
collection of tools for analysis and code generation. Architecture
Once the VDM++ representation of the specification
is acquired, prototyping can be performed on the The method of translating requirements in
specification using the VDM++ interpreter to validate natural language into UML models and/or executable

the generated formal specification against the original code (as described in the previous section) may be
requirements. Also, the formal VDM++ used to translate domain logic into formal rules.
representation can be converted into a high level Experts from various application domains may

language such as Java or C++, or into a Rational express their specification in natural language and
Rose model in UML6 [29] using the VDM++ Toolkit then use UniFrame to translate this into TLG rules
[15]. The VDM++ specification created for the above via natural language processing. These rules are

TLG is: encapsulated in a TLG class hierarchy defining a
knowledge base with the domain ontology, domain
feature models (specifying the commonality and
variability among the product instances in that
domain), feature configuration constraints, feature
interdependencies, operational rules, and temporal0
7 XMi -XML Metadata Interchange,

6 UML- Unified Modeling Language, http://www.omg.orgluml http:/lwww.omg.orgltechnology/documents/formal/xmi.htm

Pump

Fi-:,O,.softwareSystem() : SoftwareSystem
tf.cable() Cable

+pump

Mode

Patient host :Host
Patient 1 1 Mpump " Pump +pow rpower

- patient : Patient 1 1
k"'*'ivPump() : IVPump patient .power : Power
kVplacedOnto(host Host)

CRw aitState()

+hos 1

Host

IpoweredUp()
Oprovides(power : Power, pump Pump)

Figure 3: UML Representation of Requirements

concerns. TLG specifies the complete feature model to component implementation. UMM-PS merely
including the structural syntax and various kinds of indicates the technology of choice (e.g. CORBA).
semantic concerns [39]. For example, assume that our These effectively customize the component model by
application domain is for unmanned aerial vehicles inheriting from the TLG classes representing the
(UAV's). The business domain will then include a domain with new functionality added as desired. In
feature model of a UAV, which includes specification addition to new functionality, we also impose end-to-
of the various attributes and operations a UAV will end Quality-of-Service expectations for our
have, such as responding to external commands and components (e.g., a specification of the minimum
streaming video back to a satellite receiver [23]. In frame-rate in a distributed video streaming application).
related work [8], we have investigated the construction Both the added functionality and QoS requirements are
of Generative Domain Models [10] using the Generic expressed in TLG so there is a unified notation for
Modeling Environment [14]. This tool may also be expressing all the needed information about
extended with a natural language processor as a front components. The translation tool described in the
end, i.e., by applying natural language processing to the previous section may be used to translate UMM-PI into
domain model (represented in natural language), which a PIM represented by a combination of UML and TLG.
can then extract feature model representation rules and Note that TLG is needed as an augmentation of UML to
then interpret those rules to generate a graphical feature define domain logic and other rules that may not be
diagram. convenient to express in UML directly.

Platform Independent Models (PIM's) in MDA are A Platform Specific Model (PSM) is an integration
based upon the domains and associated logic for the of the PIM with technology domain-specific operations
given application. TLG allows these relationships to be (e.g. in CORBA, J2EE, or .NET). These technology
expressed via inheritance. If a software engineer wants domain classes also are expressed in TLG. Each
to design a server component to be used in a distributed domain contains rules that are specific to that
video streaming application, then he/she should write a technology, including how to construct glue/wrapper
natural language requirements specification in the form code for components implemented with that
of a UMM (Unified Meta-component Model) technology. Architectural considerations are also
describing the characteristics of that component. Our specified, such as how to distinguish client code from
natural language requirements processing system will server code. We express PSMs in TLG as an
use the UMM and domain knowledge base to generate inheritance from PIM TLG classes and technology
platform independent and platform specific UMM domain TLG classes. This means that PSMs will then
specifications expressed in TLG (which we will refer to contain not only the application-domain-specific rules,
as UMM-PI and UMM-PS, respectively). UMM-PI but also the technology-domain-specific rules. The
describes the bulk of the information needed to progress PSM will also maintain the QoS characteristics

expressed at the PIM level (a related paper [6] explores Figure 4 shows the overall view of the model-

the rules for this maintenance in more detail and [7] driven development from natural language

explores this issue for the QoS aspect of access control requirements into executable code for the previously

in particular). Because the model is expressed in TLG, described distributed video streaming application.

it is executable in the sense that it may be translated

into executable code in a high-level language (e.g. 4. Related Work and Discussion
Java). Furthermore, it supports changes at the model
level, or even requirements level if the model is not
leve, forlowing reuirts ler vetiofrom the requirements, The idea of using natural language as the basis for
refined following its derivation from ated , developing software dates back at least 20 years.

because the code generation itself is automated. Abbott [I] pointed out that nouns correspond to the

Video server UMM Video domain knowledge

Sconfiguration constraints,) NL

I NLP application rules

TVidec domain knowledge

Video server UNM~PS [[Video server UMNIIri TG

(in TLG) (in TLG)

Toolsupr

PIM knowledge (in TLG)

PSM (in UTML and ThG)

Video server implementation (in Java)

Model Driven Architecture
Figure4.Integatinfw- Lee rm arwt----------------------------a---i t

Figure 4. Integration of Two-Level Grammar with Model Driven Architecture

notion of a class in object-oriented programming crosscutting relationships across components and hence

terminology, direct references correspond to objects, improving reusability of components and reasoning

while verb and attributes correspond to class operations, about a collection of components. Such aspects of

and the control flow within those operations is also components as functional pre/post conditions and QoS

often present in the action description. Rolland and properties crosscut component modules and

Proix [33] developed an automated tool called OICSI8, specification of these aspects spread across component
which facilitated the elicitation of requirements from modules. Preliminary work in defining an aspect-

natural language text and accompanying domain oriented specification language is very promising [9].

knowledge. Luisa Mich and her colleagues ([24]. [25],
[26]) have used a natural language processing system 5. Acknowledgements
called NLOOPS to analyze natural language
requirements for the purpose of determining objects and This material is based upon work supported by, or in
their inter-relationships and construction of a part by, the U. S. Army Research Laboratory and the
corresponding object-oriented model. Nanduri and U.S. Army Research Office under contract/grant
Rugaber [27] implemented a similar system for the number DAAD19-00-1-0350, and by the U. S. Office
purpose of validating an object-oriented model against of Naval Research under award number N00014-01-1-

the natural language requirements fom which it was 0746.
derived. Ambriola and Gervasi [2] extended this idea to
incorporate modeling and model checking to achieve a
more formal validation (the authors use the term "semi- 6. References
formal" to describe the validation approach, which
eventually evolved into "lightweight formal methods" [1] Abbott, R. J., "Program Design by Informal English

[13]). LIDA (Linguistic Assistant for Domain Analysis) Descriptions," Commun. ACM 26, 11 (Nov. 1983), 882-
894.

[28] appears to be the most comprehensive system to [2] Ambriola, V. and Gervasi, V., "Processing Natural
date for assisting a software engineer to construct an Language Requirements," Proc. ASE '97, 12" Int. Conf.
object-oriented model from natural language Automated Software Engineering, 1997, pp. 36-45.
descriptions, the emphasis being on domain models. [3] Berry, D. M. and Kamsties, E., "Ambiguity in
Daniel Berry and his colleagues (e.g., see [3]) have also Requirements Specification," Perspectives on Software
worked with the problem of analyzing natural language Requirements, eds. J. C. Sampaio do Prado Leite and J.

specifications and have identified a number of difficult H. Doom, Kluwer Academic, 2003, pp. 191-194.

problems in correctly implementing requirements based [4] Bryant, B. R. and Lee, B.-S., "Two-Level Grammar as

upon natural language. an Object-Oriented Requirements Specification
Language," Proc. HICSS-35, 35"h Hawaii Int. Conf

Our work has focused on conversion of natural System Sciences, 2002, http://www.hicss.hawaii.edu/
language to formal specifications in VDM++, which in HICSS_35/HICSSpapers/ PDFdocuments/STDSLOI.pdf
turn may be converted into UML models or executable [5] Bryant, B. R., Auguston, M., Raje, R. R., Burt, C. C,
code. This paper has described an approach for unifying and Olson, A. M., "Formal Specification of Generative
the ideas of expressing requirements in natural Component Assembly Using Two-Level Grammar,"
language, constructing Platform Independent Models Proc. SEKE 2002, 14" Int. Conf Software Engineering

for software components, and implementing the Knowledge Engineering, 2002, pp. 20 9-2 12 .

components via Platform Specific Models. The [6] Burt, C. C., Bryant, B. R., Raje, R. R., Olson, A. M.,

approach is specifically targeted at the construction of Auguston, M., 'Quality of Service Issues Related to
Transforming Platform Independent Models to Platform

heterogeneous distributed software systems where Specific Models," Proc. EDOC 2002, 6th IEEE Int.
interoperability is critical. This interoperability is Enterprise Distributed Object Computing Conf, 2002,
achieved by the formalization of technology domains pp. 212-223.
with rules describing how those technologies may be [7] Burt, C. C., Bryant, B. R., Raje, R. R., Olson, A. M.,
integrated together via the generation of glue and Auguston, M., "Model Driven Security: Unification of
wrapper code. The processing of software requirements, Authorization Models for Fine-Grain Access Control,"

construction of PIMs and PSMs, and specification of Proc. EDOC 2003, 7th IEEE Int. Enterprise Distributed

technology domain rules are all expressed in TLG, Object Computing Conf, 2003, pp. 159-171.

thereby achieving a unification of natural language [8] Cao, F., Bryant, B. R., Burt, C. C., Huang, Z., Raje, R.
swith M R., Olson, A. M., Auguston, M., "Automating Feature-

requirements w DA. Oriented Domain Analysis," Proc. SERP 2003, 2003 Int.
For future work, we will investigate aspect-oriented Conf Software Engineering Research and Practice,

technology [18] as a mechanism for specifying 2003 ,pp. 944-949.

8 French acronym for intelligent tool for information system design,"
also called ALECSI [33]

. [9] Cao, F., Bryant, B. R., Raje, R. R., Auguston, M., Olson, [25] Mich, L. and Garigliano, R., "The NL-OOPS Project:
A. M., Burt, C. C., "Assembling Components with 00 Modeling using the NLPS LOLITA," Proc. NLDB
Aspect-Oriented Modeling/Specification," Proc. WiSME '99, 4 Int. Conf. Applications of Natural Language to
2003, UML 2003 Workshop Software Model Information Systems, 1999, pp. 215-218.
Engineering, 2003, http://www.metamodel.com/wisme- [26] Mich, L., Mylopoulos, J., and Zeni, N., "Improving the
2003/12.pdf. Quality of Conceptual Models with NLP Tools: An

[10] Czarnecki, K., Eisenecker, U. W., Generative Experiment," Technical Report, Department of
Programming: Methods, Tools, and Applications, Information and Communication Technologies,
Addison-Wesley, 2000. University of Trento, Italy, 2002,

[11] Duirr, E. H., van Katwijk, J., "VDM++ - A Formal http://eprints.biblio.unim.it/archive/00000127/01/47.pdf.
Specification Language for Object-Oriented Designs," [27] Nanduri, S. and Rugaber, S., "Requirements Validation
Proc. TOOLS USA '92, 1992 Technology of Object- via Automated Natural Language Parsing," J. Manage.
Oriented Languages and Systems USA Conf., 1992, pp. Inf Syst. 12, 2 (1996), 9-19.
263-278. [28] Overmyer, S. P., Lavoie, B., and Rambow, 0.,

[12] Frankel, D.S., Model Driven Architecture: Applying "Conceptual Modeling through Linguistic Analysis using
MDA to Enterprise Computing, Wiley Publishing, Inc., LIDA," Proc. ICSE 2001, 2 3rd Int. Conf Software
2003. Engineering, 200 1, pp. 401-410.

[13] Gervasi, V. and Nuseibeh, B., "Lightweight Validation [29] Quatrani, T., Visual Modeling with Rational Rose 2000
of Natural Language Requirements," Softw. Pract. and UML, Addison-Wesley, Reading, MA, 2000.
Exper. 32 (2002), 113-133. [30] Raje, R. R., "UMM: Unified Meta-object Model for

[14] GME 2000 User's Manual, Version 2.0. ISIS, Vanderbilt Open Distributed Systems," Proc. ICA3PP, 4"' IEEE Int.
University, 2001, http://www.isis.vanderbilt.edu/ Conf. Algorithms and Architecture for Parallel
publications/archive/LedecziA 12 18_2001_GME_200 Processing, 2000, pp. 454-465.
0_U.pdf. [31] Raje, R. R., Auguston, M., Bryant, B. R., Olson, A. M.,

[15] IFAD, The VDM++ Toolbox User Manual, 2000, and Burt, C. C., "A Unified Approach for the Integration
http://www.ifad.dk. of Distributed Heterogeneous Software Components,"

[16] Jacobson, I., Booch, G., Rumbaugh, J., The Unified Proc. 2001 Monterey Workshop Engineering Automation
Software Development Process, Addison-Wesley, 1999. for Software Intensive System Integration, 2001, pp. 109-

[17] Jurafsky, D., Martin, J., Speech and Language 119.
Processing, Prentice-Hall, 2000. [32] Raje, R. R., Auguston, M., Bryant, B. R., Olson, A. M.,

[18] Kiczales, G., et al., "Aspect-Oriented Programming," Burt, C. C., "A Quality of Service-based Framework for

Proc. ECOOP '97, 1997 European Conf Object- Creating Distributed Heterogeneous Software
Oriented Programming, 1997, pp. 220-242. Components," Concurrency Comput.: Pract. Exp. 14, 12

[19] Lee, B.-S. and Bryant, B. R., "Automation of Software (2002), 1009-1034.
System Development Using Natural Language [33] Rolland, C. and Proix, C., "A Natural Language
Processing and Two-Level Grammar," Proc. 2002 Approach for Requirements Engineering," Proc CAiSE
Monterey Workshop Radical Innovations of Software '92, 4,h Int. Conf Advanced Information Systems, 1992.
and Systems Engineering in the Futureý 2002, pp. 244- [34] Ward, G., "Moby Part-of-Speech II (data file)," 1994,
257. http://www.gutenberg.net/extext02/mposp10.zip.

[20] Lee, B.-S. and Bryant, B. R., "Contextual Knowledge [35] Warmer, J., Kleppe, A., The Object Constraint
Representation for Requirements Documents in Natural Language: Precise Modeling with UML, Addison-
Language," Proc. FLAIRS 2002, 15'h Int. Florida AI Wesley, 1999.
Research Symp., 2002, pp. 370-374. [36] Wilson, W. M., "Writing Effective Natural Language

[21] Lee, B.- S. and Bryant, B. R., "Contextual Processing and Requirements Specifications," Naval Research
DAML for Understanding Software Requirements Laboratory, 1999.
Specifications," Proc. COLING 2002, 19'h lnt. Conf [37] Walter Reed Army Institute for Research (WRAIR),
Computational Linguistics, 2002, pp. 516-522. "CARA Specification: Proprietary Document," WRAIR,

[22] Lee, B.-S. and Bryant, B. R., "Applying XML Dept. of Resuscitative Medicine, 2001.
Technology for Implementation of Natural Language [38] Yang, C., Lee, B.-S., Bryant, B. R., Burt, C. C., Raje, R.
Specifications," Comput. Syst., Sci. & Eng. 5 (September R., Olson, A. M., Auguston, M., "Formal Specification
2003), 3-24. of Non-Functional Aspects in Two-Level Grammar,"

[23] Loyall, J., Schantz, R., Atighetchi, M., and Pal, P., Proc. UML 2002 Workshop Component-Based Software
"Packaging Quality of Service Control Behaviors for Engineering and Modeling Non-Functional Aspects
Reuse," Proc. ISORC 2002, 5"' IEEE Int. Symp.Object- (SIVOES-MONA), 2002, http://www-verimag.imag.fr/
Oriented Real-time Distributed Computing, 2002, pp. SIVOES-MONA/uniframe.pdf.
375-385. [39] Zhao, W., Bryant, B. R., Burt, C. C., Gray, J. G., Raje, R.

[24] Mich, L., "NL-OOPS: From Natural Language to R., Olson, A. M., Auguston, M. "A Generative and
Object-Oriented Requirements using the Natural Model Driven Framework for Automated Software
Language Processing System LOLITA," J. Nat. Lang. Product Generation," Proc. CBSE 6, 6"h Workshop
Eng. 2, 2 (1996), 161-187. Component-Based Software Engineering, 2003,

http://www.csse.monash.edu.au/-hws/cgi-bin/CBSE6/

Proceedings/papersfinal/p3 1 .pdf.

Assembling Components with Aspect-Oriented Modeling/Specification*

Fei Caol, Barrett R. Bryant', Rajeev R. Raje 2, Mikhail Auguston3 , Andrew M. Olson2 ,
Carol C. Burt'

'Department of Computer and Information Sciences
University of Alabama at Birmingham

{caof, bryant, cburt})@cis.uab.edu

2Department of Computer and Information Science
Indiana University Purdue University at Indianapolis

{rraje, aolson}@cs.iupui.edu

3Computer Science Department
Naval Postgraduate School
auguston@cs.nps.navy.mil

Abstract:
Component-Based Software Development (CBSD) offers a cost-effective means of software production
with reduced time-to-market. Integration of heterogeneous components poses a non-trivial challenge in
realizing this vision, which is further complicated in a distributed environment as a result of blurred
functional and non-functional aspect' representation and management. We propose a two-level approach,
i.e., to apply aspect-oriented component modeling/specification to handle the problem.

Keywords:
Aspect Orientation, Component Modeling/Specification, UniFrame, Weaving

1. Introduction

1.1 Background

Recent development in software component technology enables the production of complex software
systems by assembling off-the-shelf components. This not only boosts productivity attributed to the
reusability of components, but also improves cost-control and maintenance of software systems.
Meanwhile, another hallmark of current software components is the heterogeneity in environment,
language and application over distributed systems.

UniFrame [Raje0l] is a framework for seamless interoperation of heterogeneous distributed software
components. It is based on the Unified Meta-component Model (UMM) [RajeOO] for describing
components. A Generative Domain Model (GDM) [CzarOO] is used to describe the properties of domain
specific components and to elicit the rules for component assembly. Systems constructed by component
composition should meet both functional and non-functional requirements such as the Quality of Service
(QoS) [Brah02]. Towards the realization of the vision of the UniFrame project, an appropriate means for
component modeling/specification is needed, which should be capable of:

SThis research is supported by the U. S. Office of Naval Research under the award number N00014-01-I-
0746.

' In this paper, "non-functional aspect", "non-functional-property" and "Quality of Service (QoS)" may be
used interchangeably.

" representing the functional properties (including not only syntactic structure but also semantic
behaviors) and requirements (pre/post condition, dependency, temporal constraints, etc.).

" representing the non-functional properties and requirements [Brah02].
" specifying the heterogeneity in terms of representing domain knowledge, e.g., technology domain.

business domain, etc.

1.2 Current Issues

Assembly of heterogeneous distributed components will require glue/wrapper code to fuse them together.
General practice leverages vendor-specific bridging products or applies hard coding, and both the
functional and non-functional aspects of the assembled system tend to be blurred by this ad hoc treatment.
We have applied Two-Level Grammar (TLG) as a formalism to specify various aspects of components
[Brya02] based on UMM. Meanwhile, it has been brought to our attention such aspects of components as
functional pre/post conditions and non-functional properties crosscut component modules and handling of
these aspects spread across component modules. This poses some problems:

"* reduced reusability of components. Component behavior may change in different contexts. The
inter-relationship between components may also change under different business rules. The "Hard-
coded" modeling/specification will be inadequate to capture the dynamics of components and
component representations may have to be revised upon different environments

"* blurred representation and management of functional and non-functional aspects of components.
As those aspects are entangled with other aspects of components, reasoning for the integrated
system based on those aspects will be hard to be carried out.

Aspect Orientation [Kicz97] provides a means to capture crosscutting aspects in a modular way with new
language constructs. This makes us believe that augmenting our existent specification approach with aspect
orientation can separate those crosscutting aspects intervening components, loosen the coupling between
components, which will contribute to not only the reusability and evolution of component without changing
the component itself, but also the manageability of component assembly. On the other hand, by using
weaving technology, dynamic concerns can be "glued" into the composition of components. This paper
will investigate the application of aspect orientation in the modeling/specification of components, in
particular, the handling of their exported service and QoS of heterogeneous distributed components in the
context of the UniFrame project.

This paper is organized as follows: Section 2 first gives an analysis of component assembly models.
Section 3 presents our two-level, model-based, aspect-oriented approach for heterogeneous distributed
component representation. Section 4 draws the conclusion.

2 Component Assembly Model Analysis

In [Shaw97], component and connector are proposed as building blocks of software architecture. The
examples of component include clients, servers, databases; the examples of connector include procedure
call, event broadcast, database protocols. The various kinds of combination patterns of component and
connector form the collection of architecture styles.

From the perspective of component assembly, we use the connector concept as an abstraction for
glue/wrapper codes necessary for component assembly, and analyze how the use of this abstraction makes
the assembly process scalable. The approach of removing assembly logic from the component into the
connector can increase the reusability of the component, reduce the complexity and boost maintainability.
Meanwhile, assembly model analysis will contribute to the automation of this process. Based on the
hierarchical relationship between component and connector in the assembly process, the assembly models
can be categorized as follows:

1) the connector and component reside at the same level (Figure 1).
This is the most common and simple assembly model, and conforms to most architecture styles
listed in [Shaw97], such as pipes andfilter, and event system. The connector here may be remote

method call, or event/message based communication for client/server architecture. This model is
mostly seen in distributed component assembly.

Figure 1: Component & Connector: Same Level

2) the components are contained in the connector. Figure 2 provides a COM 2 model.

component

. Connector 0 interface

- -binding

Figure 2: Connector as a Container

The connector acts as an infrastructure in the form of framework, which assembles components
via inversion of control, such as in EJB 3, CCM 4; or a package, using such way as manifest file to
package components, such as in JavaBeans5 . Also such connector in some cases plays the role as a
container providing extra services for the components to leverage, such as security, transaction,
life cycle management, persistence.

3) mixed form of the above two cases.
In this case, component assembly is comprised of a hierarchical process, the father assembly is
derived from the assembly of the output of each child assembly process, in the form as described
in either (1) or (2). Each child assembly process further is derived from their own child assembly
process in either (1) or (2).

3. Two-level Component Modeling/Specification with Aspect Orientation

In light of prior assembly analysis, we propose a two-level approach toward an effort of component
assembly by handling the modeling of the component and the specification of their interaction (aka.
connector) separately: the first level is the modeling of heterogeneous components (their functional as well
as non-functional properties [Brah02]) in graphical forms using some advanced CASE tools such as the
Generic Modeling Environment (GME) [GME01]; the specification of inter-relationships between
components and manipulations of the component model are included in the second level, which constitutes
the connector module. The assembly of components for the production of the final system will be in an
automatic fashion using an aspect weaver based on the modeling and specification. Figure 3 illustrates the
process.

2 COM: Component Object Model, http://www.microsoft.com/com.
3 EJB: Enterprise Java Beans, http://java.sun.com/products/ejb
4 CCM: CORBA® Component Model, http://www.omg.org/cgi-bin/doc?orbos/99-07-O1

5 http://java.sun.comr/beans!

. 3.1 Level 1: Component Modeling

One of the Object Management Group (OMG) 6 initiatives is Model Driven Architecture (MDA®)
[OMG01], i.e., by reverse engineering legacy systems and Commercial-Off-The-Shelf (COTS)
components, software can be transformed into Platform Independent Models (PIMs). PIMs, in turn, will be
mapped to Platform Specific Models (PSMs), such as CORBA 7, EJB, SOAP 8 and NET9. In this way,
legacy systems

SI.

IN Account Level I:model

.. ~

Synthesized Component Description Language Functional and Non-Functional Level 2:ipecification
Aspect Specification•....................................

weaver

Simulation

Corn4bnent VirftiafMaehine/ InferenceEfgi -

F Code Generation

Figure 3: Process of Aspect-Oriented Component Modeling/Specification

and COTS can be reintegrated into new platforms efficiently and cost-effectively. We embrace the same
vision here by representing the software components with a model-based approach. However, such PIM
model envisioned here is derived by creating meta-models specific to component modeling. In other words,
we need to formulate the building blocks for describing component models. This includes the meta-model
for business and technology domains [Zhao03]. But these are out of our scope here, which are actually the
concerns of some organization such as OMG. Additionally, there should be a means in the component
modeling level to represent the join point [Kicz97] in a component, which denotes the points that are
affected by a particular crosscutting concern. In an AOP language such as AspectJ [KiczO1],join points are
represented by referring to the syntactical constructs of the base program source. [Stei02] explores the
representation of join points in UML models by marking affected model elements using UML tags. Here
we may denote the join points by referring to the meta-information of model constructs. In that sense the

6 http://www.omg.org

htnp://www. CORBA. org
8 SOAP: Simple Object Access Protocol, http://www.w3.org/TR/SOAP

9 http://www.microsoft.com/net

join points here also represent domain knowledge and can serve as query parameters in search of specific
components.

As is illustrated in the diagram, the first-level model will be transformed into the second level using a
model-based approach consistent with the vision of MDA. This can be achieved easily using the meta-
model information of the component models. In GME [GMEOI], this is realized by using the Builder
Object Network (BON) framework for building interpreters, which traverses objects in the model tree by
calling methods within the BON API and generates the Component Description Language (CDL), which
also includes associated meta-model information to be used as the anchor of the join point.

3.2 Level 2: Component Specification

This level involves the creation of an Aspect Specification Language (ASL' 0) for describing crosscutting
concerns in a separate way. Also a weaver is built to weave the ASL with CDL to generate targeted
executable specification of components.

3.2.1 Constructs of ASL
In AspectJ [Kicz0l], the aspect specification includes three elements: pointcuts to pinpoint the affected
location of applications; advice to describe the actions that are applied to the pointcuts; the condition which
governs how/when to apply advice to pointcuts using "before", "after", etc. To generalize for ASL, we
need a means to specify:
1) join points.
2) behavior specification describing the actions to be performed.
3) policy on how the behavior is applied to join points.

(1) is as mentioned in 3. 1, and is supposed to be specified in CDL. (2) and (3) will be provided in ASL.

3.2.2 Concerns Involved
This part will eventually evolve into a catalog of concerns to be handled in heterogeneous distributed
component specification. For now the most distinct concerns involved will be:
1) gluing/wrapping of components.

The gluing/wrapping of components is generally influenced by such aspects as platform and
distribution. The component assembly process will be subject to evolution if components are
deployed on a different platform/location. This dynamism can be well embraced by policy description
in ASL. The pre/post condition as well as other constraint checking necessitated for the components
to perform interaction (here, assembly) can be represented in the behavior specification under the
corresponding policy. Obviously here the join points are contained in the involved components to be
assembled.

2) QoS measurement.
We also embed the non-functional aspects such as QoS measurement at the higher level specification
of ASL, which will contribute to the measurement of QoS of the generated system at run-time. This is
especially desired in a dynamic distributed environment, where a large amount of existent
components may be exported for use, overall system QoS serving as the criteria to the filtering of
service offerings among peer components. In [Augu95], event grammar is proposed to perform the
system testing. We believe the introduction of the aspect-oriented approach will provide support to
this effort, i.e., we can treat the QoS probing code as a behavior specification; the policy will govern
how the probing code will be called at join points for dynamic measuring of QoS. The probing code
will not be manually embedded in the points of interest, but rather using the weaver for dynamic
instrumentation.

3.2.3 Simple Assembly Example using Aspect Orientation
To help clarify the aforementioned concepts, we give a simple example demonstrating how aspect
orientation can be applied to component assembly. The ideas are adapted from aspectual components
[Lieb99], in which aspects are decoupled from the base program by being defined as a generic aspectual

10 Note this is nothing to do with the Action Semantics Language of OMG.

component, which is instantiated later over a concrete data-model. In this way, an aspect definition can be
reused. Here we define aspectual component by capturing join points at the meta-model level of
components.

Assume the component A is a banking domain client component hosted on Java RMI requesting some
banking service from some server side. Below is the partial specification of its CDL:

A.0 Component A
A.1 Bankoperation:: Service.
A.2 Bank: :BusinessDomain.
A.3 Platform: :TechDomain.
A.4 Platform= "RMI".
A.5 Requires Bankoperations
A.6 end Component A.

Note that right hand side of "::" denotes the meta-type of the left hand side. Line A.4 and A.5 are hyper-
rules. Meta-type and hyper-rule are Two-Level Grammar notations. For more details of TLG, see [Brya02].

The above specification will be translated into a corresponding aspectual component:

B.0 aspect A
B.1 Bankoperation:: Service.
B.2 Bank: :BusinessDomain.
B.3 expect Bankoperations.
B.4 expect wrap Argument. //usage interface
B.5 replace Bankoperation: //modification interface
B.6 if expected().getComponent() .getPlatform()== "CORBA"
B.7 then return expectedo.wrap("RMI").
B.8 end aspect A

Note those lines prefixed by expect denote operation signatures that are expected to be supplied with
advice. In that sense the operation signatures here correspond to the join points in AOP. In the proposed
approach here we only use meta-level types for the operation signature definition. Also the above expected
keyword denotes something to be bound to join points. In line B.3, Bankoperation itself is meta-type in the
banking business domain. Expected operations are either used (usage interface) or modified (modification
interface, preceded with replace) in the aspectual component definition. For details please see [Lieb99].
Also lines B.6-B.7 provide advice (reimplementation) for the associated operations to be specified in the
connector part below.

Assume the component B is a banking domain server component implemented in CORBA providing some
banking services.

C.0 Component B.
C.1 Withdraw, Deposit:: Service;Port.
C.2 Bank::Domain.
C.3 Platform::TechDomain
C.4 Platform= "CORBA".
C.5 end Component B.

Note in line C.1, the two types denoted in the right hand side of"::" means both withdraw and deposit are
not Services, but also Ports, which means they are component services offered to external components.

The following is an ASL specification for component assembly.

D.0 connector A-B
D.1 Bankoperation=Withdraw, Deposit. //join points
D.2 wrap(Argument): if (Argument.getname=="RMI")
D.3
D.4 //provide wrapping specification for

. D.5 //RMI-CORBA inter-operation
D.6]
D.7 end connector A-B

Note that lines D.2-D.6 further implement the advice part for the join points (here, Withdraw and Deposit

operation). The body of wrap is ignored without loss of generality.

From the example illustrated in this section, we can see the interactions of two components can be

separated by being handled in a module (here in the aspectual component definition, i.e. the "aspect A"

module). Consequently the assembly process can be implemented by using a weaver to weave advice

together with component specifications. As we can see in the body of "aspect A", it is straightforward for

us to apply other concerns in between, e.g., we can call expected0.preconditiono wherever applicable in

the replace function body to enforce some preconditions.

3.3 System-Level Simulation

We are investigating such program transformation tool as DMS" for building a weaver to weave CDL and
ASL together, the output of which will be fed into the simulation phase to validate the functional system
behavior against requirements before implementation code is generated and deployed. This simulation may
be carried out by building a component virtual machine [Ducl02], which serves as an interpreter to interpret
the weaved specifications; or by building rule sets based on requirement and then use some inference
engine to validate the functional requirements. In this way, the assembled system will be functionally sound
at an early phase. On the other hand, the generated applications, as they are probed with non-functional
aspect related codes, are amenable to be benchmarked over the specific QoS parameters [Brah02] in the
system deployment time.

4. Summary and Future Work

We have presented a two-level approach for handling the crosscutting concerns of functional/non-

functional concerns in integrating heterogeneous distributed components. This approach has a close tie to

MDA in the sense that we leverage component modeling at the first level and then map the component

models into the CDL in the second level. The CDL and ASL will be weaved together to generate the

executable specification for system simulation. The approach also applies to model weaving in MDA.

We have applied modeling techniques for enriching semantics of Web Services and to generate

semantically enriched Web Service Description Language (WSDL) [Cao03]. We have also prototyped
CDL for component assembly [Cao02]. Future efforts will be to apply modeling experiences to describing

the semantics of component cases of some specific domain, and to build ASL together with its associated
weaver for the synthesis of executable specifications.

References:

[Augu95] M. Auguston. Program Behavior Model Based on Event Grammar and its Application for

Debugging Automation. Proceedings of the 2 "d International Workshop on Automated and Algorithmic
Debugging, pp. 277-291, 1995.

[Brah02] G. J. Brahnmath, R. R. Raje, A. M. Olson, M. Auguston, B. R. Bryant, and C. C. Burt. A Quality
of Service Catalog for Software Components. Proceedings of (SE)2 2002, the Southeastern Software

Engineering Conference, pp. 513-520, 2002.

"DMS: Design Maintain System Tm , http://www.semdesigns.com/

0 [Brya02] B. R. Bryant, B.-S. Lee. Two-Level Grammar as an Object-Oriented Requirements Specification
Language. Proceedings of 3 5 "h Hawaii Int. Conf System Sciences, 2002,
http://www.hicss.hawaii.edu/HICSS_35/HICSSpapers/PDFdocuments/STDSLOI .pdf.

[Cao02] F. Cao, B. R. Bryant, R. R. Raje, M. Auguston, A. M. Olson, C. C. Burt. Component
Specification and Wrapper/Glue Code Generation with Two-Level Grammar using Domain Specific
Knowledge. Proceedings of 4'h International Conference on Formal Engineering Methods (ICFEM'02),
LNCS 2495, Springer-Verlag, pp. 103-107, 2002.

[Cao03] F. Cao, B. R. Bryant, C. C. Burt, J. G. Gray, R. R. Raje, A. M. Olson, M. Auguston. Modeling
Web Services: Toward System Integration in UniFrame, to appear in Proceedings of 7th World Conference
on Integrated Design and Process Technology (IDPT'03), 2003.

[CzarOO] K. Czarnecki, U.W. Eisenecker. Generative Programming: Methods, Tools, and Applications,
Addison-Wesley, 2000.

[Ducl02] F. Duclos, J. Estublier, P. Morat. Describing and Using Non Functional Aspects in Component
Based Applications. Proceedings of Second International Conference on Aspect-Oriented Software
Development, AOSD'02, 2002.

[GME01] GME 2000 User's Manual, Version 2.0, ISIS, Vanderbilt University, 2001.

[Kicz97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. Proceedings of European Conference on Object-Oriented Programming
(ECOOP), LNCS 1241, Springer-Verlag, pp. 220-242, 1997.

[KiczO1] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold An Overview of
Aspecti. Proceedings of European Conference on Object-Oriented Programming (ECOOP), LNCS 2072,
Springer-Verlag, pp.327-353, 2001.

[Lieb99] K. Lieberherr, D. Lorenz, M. Mezini. Programming with Aspectual Components. Technical
Report, NU-CCS-99-01, 1999, http://www.ccs.neu.edu/researchldemeter/papers/aspectual-
comps/aspectual.ps.

[OMGOI] Object Management Group (OMG). Model Driven Architecture: A Technical Perspective.
Technical Report. Document # ormsc/2001-070-1, Framingham, MA, Object Management Group, 2001.

[Raje00] R. R. Raje. UMM: Unified Meta-object Model for Open Distributed Systems. Proceedings of
ICA3PP, 4' IEEE nt. Conf Algorithms and Architecture for Parallel Processing, pp. 454-465, 2001.

[Raje0l] R. R. Raje, B. R. Bryant, M. Auguston, A. M. Olson, C. C. Burt. A Unified Approach for the
Integration of Distributed Heterogeneous Software Components. Proceedings of Monterey Workshop
Engineering A utomation for Software Intensive System Integration, pp. 109-119, 200 1.

[Shaw96] M. Shaw, D. Garlan. Software Architecture: Perspectives on an Emerging Discipline, Prentice
Hall, 1996.

[Stei02] D. Stein, S. Hanenberg and R. Unland. On Representing Join Points in the UML. Aspect
Modeling with UML Workshop at the Fifth International Conference on the Unified Modeling Language
and its Applications, 2002, http://www-stud.uni-essen.de/-sw0136/wissensArbeiten/
UML02Workshop.pdf.

[Zhao03] W. Zhao, B. R. Bryant, C. C. Burt, J. G. Gray, R. R. Raje, A. M. Olson, M. Auguston. A
Generative and Model Driven Framework for Automated Software Product Generation. Proceedings of
CBSE 6, the 6th Workshop on Component-Based Software Engineering: Automated Reasoning and
Prediction, 2003, http://www.csse.monash.edu.au/-hws/cgi-bin/CBSE6/Proceedings/papersfinal/p3l.pdf.

Integrated Design and Process Technology, IDPT-2003
Printed in the United States of America, June, 2003

©2003 Society for Design and Process Science

. MODELING WEB SERVICES: TOWARD SYSTEM INTEGRATION IN UNIFRAME

Fei Cao, Barrett R. Bryant, Carol C. Burt, Jeffrey G. Gray
Department of Computer and Information Sciences

University of Alabama at Birmingham
Birmingham, AL 35294, USA

{caof, bryant, cburt, gray}@cis.uab.edu

Rajeev R. Raje, Andrew M. Olson
Department of Computer and Information Science

Indiana University Purdue University at Indianapolis
{rraje, aolson}@cs.iupui.edu

Mikhail Auguston
Computer Science Department

Naval Postgraduate School
auguston@cs.nps.navy.mil

ABSTRACT design artifacts (such as models, high-level
specifications, etc.) in the business components. To

Web Services offer a platform independent solution that end, the vision of MDA also includes packaging
for system integration in a distributed environment. But models together with parameterized generators. The
Web Services are weak in representing the business application generator will produce customized
semantics of application domains. This paper presents components according to the configuration parameters.
a model-driven approach for specifying domain- In that way, not only can the footprint of business
specific component models in an effort to complement systems be minimized, but also various kinds of
the current Web Services technology in terms of artifacts of business system can be generated on
enriching the semantics representation. Web Services demand for system synthesis.
Description Language (WSDL) can then be generated On the other hand, Web Services (WS)2 technology
automatically from the models with generators. The offers a platform-independent solution for Enterprise
modeling of domain-specific components serves as a Application Integration (EAI) by wrapping legacy
front-end to represent the semantics of components as systems as WS [Grah02]. Combining the model-driven
well as for formalizing components while the approach with WS technology, software systems can
generated artifacts facilitate component service be produced by synthesizing distributed models using
synthesis. generator technology.

UniFrame [Raje0l] is a framework for seamless
1. Introduction integration of heterogeneous distributed software

components to assemble a complete distributed
The integration and reuse of legacy software software system. The assembly process involves the

systems offer a promising direction for boosting generation of glue/wrapper code [Brya02], which is a
productivity by dramatically reducing both cost and challenging ad-hoc task considering the heterogeneous
time-to-market expenses. One of the Object nature of distributed components. Because WS are
Management Group (OMG) initiatives is Model Driven based on open industry standards working across
Architecture (MDA)', in which legacy systems and different platforms, wrapping heterogeneous
Commercial-Off-The-Shelf (COTS) software can be components with WS for integration will transform the
transformed by reverse engineering into Platform assembly task from n*m to n*I processes (see Figure
Independent Models (PIMs) representing business 1). The contribution of this paper is to propose the use
functionality with underlying technical details of WS as a potential vehicle for system integration in
presented abstractly. If this effort is successful, legacy UniFrame by enhancing semantic expressive power of
systems and COTS software can be reintegrated into WS using the model-driven approach. The related
new platforms efficiently and cost-effectively. But for process is described herein.

O legacy systems and COTS software, the business logic In this paper, we present an approach based upon
and the software structures are usually encapsulated as the principle of Model-Integrated Computing (MIC)
black boxes, which makes it difficult to be reverse [L~de0l] to model the business domain-specific UMM
engineered. Hence, it is necessary to include the component models. This involves a graphical modeling

bhttp://www.omg.org/mda/ 2 http://www.w3.org/2002/ws/

0
provider for computational functionality and a gateway

0 0 0 for further resource offerings, has not only
-'OO 0L computational aspects, but also cooperative aspects in

aspects like mobility and security.

b) Service and Service Guarantees.

Figure 1. Reducing Gluing/Wrapping Process Here we are focusing on providing metrics for

quantifying the services provided by components as a
criteria for making choices from multiple service

environment for customizing a domain system based providers, as well as criteria of judging assembled
on domain-specific meta-models. An interpreter is built system by composing components. Once a component
to generate WS Description Language (WSDL)' for does not satisfy the expected QoS, it is a candidate for
business service integration. A generator can also be substitution. By modeling QoS aspects in the meta-
created to directly synthesize the implementation code. model, we can weave the QoS instrumentation into
Figure 2 gives an overview of the approach. generated code for QoS measurements at deployment

This paper is organized as follows. Section 2 time.
introduces the background knowledge of the UniFrame
project, for which the proper meta-model development c) Infrastructure
is imperative. Section 3 introduces the modeling
environment and modeling targets with regard to the In UniFrame, the Internet Component Broker (ICB)
UMM model and WS. Section 4 describes the and Headhunters [Sira02] are proposed as two facilities
interpreter that generates the WSDL. A banking in an effort to seamlessly integrate heterogeneous
example is given in Section 5 illustrating the proposed components. ICB provides translation capacity in terms
approach. This paper ends with the conclusions and of adapter technology for achieving interoperability,
outlook in Section 6. while Headhunters actively detect the presence of new

components in the search space, register their
2. UniFrame functionality and attempt match-making between client

components (service requesters) and server
UniFrame is based on the Unified Meta-Component components (service providers). By generating such

Model (UMM) [Raje00] for describing components. component specifications in XML, a component can be
Systems constructed by component composition should exposed for external querying, e.g., using XQuery2.
meet both functional and non-functional requirements Also, a pre-built meta-model, from which the domain-
such as Quality of Service (QoS) requirements specific model is created, represents the domain
[Raje02]. UniFrame includes a specification of ontology [Grub93] and provides the leverage for the
appropriate QoS parameters, which provide metrics of ICB and Headhunter.
service at both the component level and system level, The aforementioned three concerns necessitate a
so that the software system produced by assembling proper methodology of creating a meta-model to
heterogeneous components can be benchmarked over modeling the following categories:
not only functional requirements, but also non- Table 1. Component Description in UMM
functional criteria. A Generative Domain Model
(GDM) [CzarOO] is used to describe the properties of Inherent ID
domain- specific components and to elicit the rules for Computational Attrnbutes Attributes

component assembly. Functional Description
Attributes Algorithm

2.1 UMM Complexity

SyntacticContract
In the Unified Meta-Component Model (UMM), Technology

we are concerned about the following three aspects:

a) Component: Cooperation Attributes Precondition
Posteondition

In [Medv97], components are described as being Auxiliary Attributes Security

O composed of the following aspects: interface, types, Mobility
semantics, constraints and evolutions. But, this view
does not reflect the collaborative features of distributed QoS Metrics Availability

components. We believe that a component, as a End-to-End delay

I http://www.w3.org/2002/ws/ 2 http://www.w3.org/XML/Query

2

e •[Domain-Specific Meta Model

(Business Ontology)

MDA Meta Level
(MO-M2) Generator1 i

.........- - -

Generator2 wrapping

Figure 2. Overview of Approach

-Modelu a. pConnecification of Mowh e ction- alConnection> pain- ecticesn

V .s !s -. .' d- t 0

s etilaviabe chie pilb rort prn bniar obnvrnetnddn ge ersat e iptt oeaayiol

pr Models and rAtoreused po rtwyp e RM S Sateo w m .J- °"= "67. -<Atom -> 5r ..

Figure 3. Meta-Model of WSDL

Obviously, a pure textual specification of UMM, while to automatically compose a domain-specific design

still a viable choice, will be error prone and hard to be environment and generate input to some analysis tools

processed and reused. The widely used Rational Rose such as Matlab Simulink/Stateflow [Neem02]. MIC

[QuatOO] toolkits, however, can only be used for non- includes the Generic Modeling Environment (GME)
executable modeling, in the sense that you have no for creation of domain-specific models, a Model
control over generation of complete applications, Database for model storage, and a Model Interpretation
which is not adequate enough for modeling UMM. technology for building model interpreters. In GME,
This problem will be addressed using tool support the meta-models use Unified Modeling Language
introduced in the next section. (UML) class diagrams to model the system

information. Figure 3 gives the WSDL meta-model
3. Modeling as the Front End of Web Services using GME. Also MCL (MGA' Constraint Language)

[GMEOO], which is a subset of UML OCL2 with some
3.1 Generic Modeling Environment (GME) MGA specific extension, is used to enforce some

Model Integrated Computing (MIC) employs meta- I MultiGraph Architecture [Szti95]
modeling to define the domain modeling language and 2 http://www-3.ibm.com/software/ad/library/standards/
model integrity constraints. It uses these meta-models ocl.html

3

semantic rules in MGA modeling paradigms. This adds 4. Web Services GeneratorO some formalism to the modeling, which can be used to
enrich the semantic expressiveness of WSDL, as is A key aspect of MDA is the generator technology.
explained later in section 5 By generating implementation code from a high-level

WSDL is not convenient to be manually coded. specification language, software systems can be
Many tools such as AXIS', and the Microsoft Net produced with high efficiency while the scale of
framework provide the function of generating WSDL software reuse will be reduced at the specification
from implementation code (such as Java and C#) and level. GME provides the Builder Object Network
vice versa. Such tools leverage compiler technology to (BON) framework [GME00] for building interpreters
generate WSDL from some other programming by instantiating each object in the model tree with a
languages. In contrast, by generating WSDL from a C++ object. The objects in the model tree can be
high-level language-independent model, we can avoid traversed by calling methods within the BON API. In
the need for language-specific compilers. This permits order to precisely generate target code from the models
easier maneuvering of the generated WSDL at a higher using a generator, a special atom can be added in the
level. Also, by standardizing the meta-model and the GME environment denoting specific meaning so as to
associated generator, the domain ontology will be enrich the semantics of modeling. e.g., in feature
uniformly embodied in generated WSDL. This will modeling [Czar00], there are mandatory features,
facilitate program-to-program interoperation bearing optional features and alternative features for some
the intelligence of software agents, such as autonomy concept. We can add a Require atom, an Or atom, an
and knowledge [GrisO1]. XOR atom to denote the three relationships between

other atoms. Figure 5 illustrates the strategy. In this
3.2 Enriching and Modeling WS Semantics way, the designated semantics can be captured when

traversing the model tree. This strategy can also be
Current WS standards mainly embody the applied to model UML relationships such as

semantics of processes at the collaborating syntactic Dependency, Generalization, and Association. In this
interface level. WSDL only exposes distributed object way, the built-in class diagram facilities of GME itself
services, while such process behavior aspects as can be extended.. ordering, and dependency are not well specified in the
existing WSDL standard. Figure 4 gives the meta- 5. Putting it Together
model of a Finite State Machine (FSM), which can be
used to model the dynamic behavior of WS, in This section will use GME to create a meta-model
particular, the sequence of states that the WS behavior embracing both UMM and WS, and an interpreter is
goes through in its lifetime. We will illustrate this point built based on this meta-model for generating WSDL
in detail in a later example. in an effort to facilitate component service synthesis in

UniFrame.

L n I transitnion , StateDiagram
,FO,,ee -Connection-e 5.1 Creating Banking Domain Meta-Model

condiion : field

strState, field
Below is a simple banking domain specification:

A bank provides the service for users to
set up accounts. Account information
includes personal data including Name,
SSN, phone number, address, and account
data including Account Number, PIN,
Transaction Record, Balance. There are
two types of accounts: checking account
and savings account.

For the bank side, it provides such
... services as: Account Validation (to

Startstate InterState EndState ensure legal access of account) , Account
""om- -Ato L -',Atom Verification (to double check the account

strM-ale: I eld after each transaction, including
transaction history, transaction
description, etc), Account Query (balance

Figure 4. Finite State Machine (FSM) Meta-model checking), Deposit, Withdraw, and
Transfer. There is order restriction for
those operations. Both Transfer and
Withdraw have to be preceded by a Query
operation. The Account Verification comes
after each of the other operations.

http://ws.apache.org/axis/

4

Require OR XOR

C Al C2 C3 CI C3 Ci C2

(1) Concept C requires all the three (2) Concept C contains some of the three (3) Concept C contains exactly one of the three
features: Cl. C2, C3 features: C1. C2, C3 features: CI, C2, C3

Figure 5. Representing Semantics of Feature Modeling with Atom-to-Atom Connection

Banking~omaini
-- Modelt- "n..- qosbinding 1nput . - ''Connection""-Connecton- I "Conncionput

PersonalAccount"-Model- 0*..

o. SSN: field .!orType>
Accuntplhone:. field "Modet> A' UA (3MAlt,,butes

-'oFCO - _ address: field - -

AccounlNumber: fie 6 Iate~eploeld i
Pin: felersdon: fiel

F r .tcgo..

tochecking saccontg ti sntte rqieetrcieyadtecntanscnntb

e e c ag T M o e- base ge ll b

aboveouPle.a eetersb serveI~~-tm 74o -, t n I -r--I r

modelin the sdpecbifiction finel rahcldahint

outhe t: fiend r i msall ilit : field
l c s

Maantat'abrlety: field aNd k
i I- I ... Portability : field/SI ... l o, , ,.,Security: field -

I qu.ery -• IrJf-; l Throughput: field

A vailabilityt Dependability,:aa i y k o l d e fir~ y ei Wd L d n t s he Wetc. (orm ore .t .. Qo parametrs 1. see- IL ;abtract) InTerfaceund-re~finiine I srersntdad

Figure 6. Meta-model of Banking Domain

Deposit and withdraw can only be applied architecture. Thus it is hard to represent the intended
to checking account (this is not the requirements precisely and the constraints can not be
generic case, though). The aforementioned warranted. Model-based WSDL generation will beserhic udes are oponal eqreets, ofa e able to solve the ambiguity problem by clearlyabov rues re osered.modeling the specification in a graphical fashion to

The banking service may leverage such capture all the involved relationships. The meta-modeltechnology as RMI, J2EE, and CORBA. Also in Figure 6 represents the banking domain knowledge.
it will enforce some QoS concerns such as It's derived from WSDL elements and banking domain
Availability, Dependability, Capacity, knowledge. portType in WSDL denotes the WS
etc. (For more QoS parameters see abstract interface definition. It is represented as a
[Raje02]). model in Figure 6, which contains the following

Drclexrsigteaoeseiiaini banking-domain specific operations: query, deposit,
DLirecly tendpressing the 4+1oviwofte specficatio withdraw, transfer, verification. binding in WSDL

WSDLwil ten toblurthe4+Iview ofthe oftare denotes how the elements in an abstract interface
i (portType) are converted into a concrete representation

which includes functional requirements, software module in a particular combination of data formats and
organization, run-time implementation structure of the system, etc. protocols (here, platform specific implementation in
For details see [Kruc95]

CORBA, J2EE, RMI, etc). Consequently, binding is i.e., those services can only be applied to checking
represented as a connection between portType and account.
UMMAttibutes. which is the parent of the CORBA, But, when it comes to the handling of order
J2EE and RMI atoms. constraints as specified in the banking domain

The left part of Figure 6 (PersonalAccount, example, obviously MCL is not adequate enough to
Account, checking, saving) is basically about a capture such dynamic behaviors. Such modeling

simplified version of the feature modeling [CzarOO] of techniques as using the Finite State Machine will
the banking domain, which is treated as input provide modeling capacity for advanced behavior,
(represented as connection here) into operations of which is detailed in the next section.
portType. Also QoS parameters, by being associated
with portType, will be embedded into the generated 5.2 A Banking Model and WS-based Integration
WSDL as extended attributes. WSDL itself is XML
based, so a query expressed in XQuery can make use Figure 7 is an example of the banking model. For
of extended WSDL attributes to refine the query in this model, "My Account" is the name for the
selecting targeted WSDL. Here, the listed QoS "PersonalAccount" model. It has two kinds of account:
parameters are treated as of static type. For dynamic both checking (c) and savings (s). "Service Offering"
parameters, we can apply aspect weaving [K-icz97] represents the "portType". It offers 4 types of service
technology in the code generation phase for performing (without transfer in this case): d: deposit, q: query, w:
dynamic measurements. withdraw, v: verification. From the connections

The specified constraints over withdraw and deposit between the ports we can see for this banking model,
operations can be enforced in GME using the following the query can only be applied to the savings account,
MCL (refer back to section 3.1) expression: while verification can be carried out over both types of

account. Withdraw and deposit only applies to
connectedFCOs ("src") ->forAll (checking account. Otherwise the modeling

ci c. kindNarne () ="checking") environment will give warnings when modeling, which

is consistent with the MCL specification. Also, noticeThose constraints apply to both the withdraw atom and for this banking model, RMI technology is adopted and

the deposit atom in Figure 6, which means those First som Qos pa ram etr re secified hr aso wn in
Clas Obect (FO: rferingto oth ntiiesand some QoS parameters are specified here, as shown in

r lass Objects (FCO: referring to both entities and the lower-right corner attribute list. The attribute list
relations in GME) that are connected with associated with RMI will also be shown in the corner if
withdraw/deposit atoms are all of kind "checking"; the RMI atom is under focus.

Sv

• " "..... • OoSParameters

RMI

Corba -J2EEo o -oSPa areters

O f___j C X -t1 TI 71

Person Accoun " A

6 e . JCor..i Jeoim r0~rmtr

RMI T,,,,~ 1
portType _________

Redy -FlO K8!P

Figure 7. "My Account": a Banking Model

6

From the model in Figure 7 the interpreter will <binding>

generate two sets of codes: the WSDL code for the </binding>

banking service embedded with QoS parameter
extension, and the WS wrapping code for the <service name="My Bank" Portability="0.544400"

underlying RMI implementation. Because the Dependability="0.780000" Turn-around-

generated WSDL is quite lengthy, we will just show time=12.OOOOOO/>
<port>

some model-specific contents as shown in the
following paragraph. Notice the bold-font part of the </port>
following WSDL represents the QoS extension of </service>

WSDL, which may be used for WS filtering if QoS </definition>

requirements are submitted in the query expression.
Now we turn to the handling of the order restriction

<definition name="my bank"> requirement in the banking domain specification. We

<types> will use the FSM meta-model (Figure 4) to build the
<xsd:schema banking service state model as shown in Figure 8 and
targetedNamespace="http://localhost/bank" the associated interpreter. Because every service
)•nlns:xsd="http://www.w3 corresponds to the child node (atom) of portType

.org/2001/XMLSchema"> model in Figure 6, we can use BON API (refer back to
<xsd:complexType name="Account">

<xsd: sequence> Section 4) to traverse those child atoms of portType in
<xsd:element name="AccountNumber" the banking model one by one while retrieving the

type="xsd:string"/> connection information of each atom. The generated
<xsd:elemnent namne="Pin'

typee "xsd: string"/> WSDL extension describing the state transition process
<xsd:element name="Balance" is as follows:

type="xsd:decimal'/> <state>
</xsd:sequence> <state name= "Login" >

</xsd:complexType> <state name="Validation" >
<xsd:conplexType name="checking"> <state name=*Query" >

<xsd:complexContent> <state name="Deposit" >
<xsd:extension base="Account'> <state name="Transfer" >

</xsd:complexContent> <state name="Withdraw" >
</xsd:complexType> <state name="Verification" >
<xsd:complexType name="savings"> </state>

<xsd:complexContent> <transition>
<xsd:extension base="Account"> <transition src="StartState"

<xsd:attribute name="interestrate" dst="Login" condition=-">
type="xsd:decimal'/> <transition src="Login" dst="Login"

</xsd:complexContent> condition=-">
</xsd:complexType> <transition src="Login"

</xsd:schema> dst="Validation" condition="">
</types> <transition src="Validation"

dst="Deposit" condition=-">
<message name="checking"> <transition src="Validation"
<part nalne="pl" type="checking"/> dst="Query" condition=->

</message> <transition src="Deposit" dst="Deposit"
<message name="savings"> condition=-">
<part name='pl" type="savings"/> <transition src="Deposit"

</message> dst="Verification" condition=-'>
<message name="checking-savings"> <transition src="Query" dst="Transfer"
<part name="pl" type="checking"/> condition=-">
<part name="p2" type="savings"/> <transition src="Query" dst="Query"

</message> condition=-">
<transition src="Query" dst="Withdraw"

<portType name="bankPortTypeI> condition=-">
<operation name="withdraw"> <transition src="Query"

<input message="checking"/> dst="Verification" condition=-">
<output message=""/> <transition src="Transfer"

</operation> dst="Transfer" condition=-">
<operation name='deposit"> <transition src=*Transfer"

<input message="checking"/> dst="Verification" condition=-">
<output message=-"/> <transition src="Verification"

</operation> dst="StartState" condition="">
<operation name="verification"> <transition src="Verification"
<input message="checkingsavings"/> dst=*Verification" condition="">
<output message="'/> <transition src="Verification"

<operation name= "query"> <transition src="WithDraw"

<input message="savings'/> dst="WithDraw" condition=-">
<output message=-'/> <transition src="WithDraw"

</operation> dst="Verification" condition="->
</portType> </transition>

7

•') iI ~ '~f I ,o 'lI li'

e -. ,.-O'jer,.--------_____÷_,_,__

It C-

Lolnr--] [I

Iai a 1 IIIr l I I I II I I I

Ae e!

i FndSlato Inlef l~tat,ý•J

ATM I

Figure 8. Banking behavior model based on FSM meta-model

Note in the generated state transition code, the model-based glue/wrapper code generation between
"condition" attributes are supposed to be customized in WS and other component models.

O the specific banking behavior model before code
generation, which for the sake of brevity are left blank Acknowledgements. This research is supported by the
here. The state transition specification generated here U. S. Office of Naval Research under the award
may be used in guiding the WS consumption and numberNOOO14-01-1-0746.
composition.

REFERENCES
6. Conclusions and Future Research

[Brya02] Bryant, B. R., Auguston, M., Raje , R. R.,
This paper applies the model driven approach to Burt, C. C., Olson , A. M., 2002, "Formal

WS technology. By modeling service behavior at a Specification of Generative Component
higher level, the system semantics can captured at a Assembly Using Two-Level Grammar,"
finer grain. Meanwhile, different artifacts can be Proc. SEKE, 1 4 'h Int. Conf. Software
derived from models using a generator, which will not Engineering and Knowledge Engineering,
only refine the service presentation, but also facilitate pp. 209-212.
system integration. In particular, this approach is [CzarOO] Czarnecki, K., Eisenecker, U.W., 2000,
applied in the context of the UniFrame project for Generative Programming: Methods, Tools,
system integration. So far, we have implemented a and Applications, Addison-Wesley.
prototype with the function of WSDL generation from [GME00] "GME 2000 User's Manual, Version 2.0,"
a specific component model and FSM modeling for 2001, ISIS, Vanderbilt University.
component services. [Grah02] Graham, S., Simeonov, S., Boubez, T.,

Because the meta-model is the starting point and Davis, D., Daniels, G., Nakamura,Y.,
cornerstone of system integration, we will need to Neyama, R., 2002, Building Web Services
refine the meta-model leveraging domain knowledge with Java, SAMS.
until it can be standardized. To enhance the semantics [Gris0l] Griss, M., 2001, "Software Agents as Next
expressing capability of WS, future research will Generation Software Components",
involve not only state machine modeling, but also the Component-Based Software Engineering, ed.
modeling of other behavior concerns, such as Heineman, G. T., Councill, W. T., Addison-
interaction, activity, process/thread and temporal Wesley, pp. 641-657.
relationship. Also, technology and QoS modeling in [Grub93] Gruber, T. R., 1993, "A translation approach
the above banking example are still quite primitive, to portable ontology specifications,"
both of which need further exploration for the ultimate Knowledge Acquisition, Vol. 5, No. 2, pp.

8

199-220. [Szti95] Sztipanovits, J., Karsai, G., Biegi, C., Bapty,

* [Kicz97] Kiczales, G., Lamping, J., Mendhekar, A., T., L~deczi, A., Misra, A., 1995,
Maeda, C., Lopes, C. V., Loingtier, J.-M., "MULTIGRAPH: An Architecture for

and Irwin, J., 1997, "Aspect-Oriented Model-Integrated Computing," Proc. IEEE

Programming," Proc. ECOOP, European ICECCS, International Conference on

Conference on Object-Oriented Engineering of Complex Computer Systems,

Programming, Springer-Verlag LNCS Vol. pp. 361-368.

1241, pp. 220-242.
[Kruc95] Kruchten, P.B., 1995, "The 4+1 Views

Model of Architecture", IEEE Software, Vol.

12, No. 6, pp. 42-50.
[L~de0I] L~deczi, A., Bakay, A., Maroti, M.,

Volgyesi, P., Nordstrom, G., Sprinkle, J. and.

Karsai, G., 2001, "Composing Domain-
Specific Design Environments," IEEE
Computer, Vol. 34, No. 11, pp. 44-5 1.

[Medv97]Medvidovic, N., Taylor, R.N., 1997, "A
Framework for Classifying and Comparing
Software Architecture Description
Languages, " Proc. ESEC/FSE '9, European
Software Engineering Conf/91h Conf
Foundations of Software Engineering,
Springer-Verlag LNCS Vol. 1301.

[Neem02] Neema, S., Bapty, T., Gray, J., Gokhale, A.,
2002, "Generators for Synthesis of QoS

Adaptation in Distributed Real-Time
Embedded Systems," Proc. GPCE, First
ACM SIGPLAN/SIGSOFT Conf Generative
Programming and Component Engineering,
Springer-Verlag LNCS Vol. 2487, pp. 236-
251.

[QuatOO] Quatrani, T., 2000, Visual Modeling with
Rational Rose 2000 and UML, Addison
Wesley.

[Raje00] Raje, R., 2000, "UMM: Unified Meta-object
Model for Open Distributed Systems," Proc.
ICA3PP, 4th IEEE Int. Conf Algorithms and

Architecture for Parallel Processing, pp.
454-465.

[RajeOI] Raje, R., Bryant, B., Auguston, M., Olson,
A., Burt, C., 2001, "A Unified Approach for
the Integration of Distributed Heterogeneous
Software Components," Proc. Monterey
Workshop Engineering Automation for

Software Intensive System Integration, pp.
109-119.

[Raje02] Raje, R. R., Auguston, M., Bryant, B. R.,
Olson, A. M., Burt, C. C., 2002, "A Quality
of Service-Based Framework for Creating
Distributed Heterogeneous Software
Components," Concurrency and
Computation: Practice and Experience, Vol.
14, No. 2, pp. 1009-1034.

[Sira02] Siram, N. N., Raje, R. R., Olson, A. M.,
Bryant, B. R., Burt, C. C., Auguston, M.,
2002, "An Architecture for the UniFrame
Resource Discovery Service," Proc. SEM,

3 rd Int. Workshop Software Engineering and

Middleware, Springer-Verlag LNCS Vol.
2596.

9

0
Automated Glue/Wrapper Code Generation in Integration of Distributed and

Heterogeneous Software Components

Wei Zhao, Barrett R. Bryant, Rajeev R. Raje, Mikhail Auguston
Fei Cao, Carol C. Burt Andrew M. Olson Computer Science Department

Computer and Information Computer and Information Naval Postgraduate School

Sciences Department Science Department Monterey, CA 93943, USA

University ofAlabama at Indiana University Purdue auguston@cs.nps.navy.mil
Birmingham University Indianapolis

Birmingham, AL 35294-1170, Indianapolis, IN 46202, U.S.A.
U.S.A. {rraje, aolson}@cs.iupui. edu

(zhaow, bryant, cburt}

@cis.uab.edu

Abstract component-based software engineering in distributed

computing environments, the inherent complexity, de-

UniFrame is a framework to help organizations to centralization and heterogeneity of DCS still remain risks

build interoperable distributed computing systems. Using and challenges. Achieving a seamless interoperation

UniFrame, a new system is built by assembling pre- among heterogeneous distributed components would be

developed heterogeneous and distributed software the most critical task of building a successful DCS.

components. UniFrame solves the heterogeneity problem UniFrame [Raj0l], [Raj02] is such a framework to help

by explicitly modeling the domain knowledge of various organizations to build interoperable DCS.

technology domains (component model domains, To meet the challenges, UniFrame has the following

programming language domains, operating system three specific goals:

platform domains, etc.), from which the Interoperation
Generative Domain Model (IGDM) straddling the 1. The genetic diversity and complexity of the world (a

technology domains can be constructed. The plethora of component models, programming languages,
glue/wrapper code that realizes the interoperation operating systems, communication protocols) causes

among the distributed and heterogeneous software separation and isolation among the technology islands.

components can be generated from the IGDM. In this UniFrame provides a unified interoperation among the

paper, an informal implementation in Java of collaborating components.

glue/wrapper code generator is given, followed by a 2. The rapid technology evolution makes the application

discussion on a formalization of IGDM The formalism integration a real challenge. With the interoperability,
comes from the fact that if the family of glue/wrapper the legacy features can be integrated into the system

code can be modeled formally, an instance glue/wrapper developed in new technologies.

code can be generated automatically. In this 3. The advances in the processor and networking

formalization, the IGDM is formally modeled as a technologies have changed the computing paradigm

language definition using a grammar; the code that from a centralized to a distributed one. "The network is

realizes the interoperation is a valid sentence derivable the computer." The ability to deal with distribution is
from the grammar, and will be generated automatically essential to develop large scale DCS.

from the 1GDM during the assembly time.
In short, UniFrame aims at the distribution and

1. Introduction interoperation. Using UniFrame, a new system is built by
assembling pre-developed heterogeneous and distributed

n tsoftware components. This paper will discuss theIn today's world, distributed computing systems (DCS) interoperation framework in UniFrame.

are omnipresent. The successes of organizations will The paper is organized as follows. Section 2 distills

largely depend upon their abilities to create robust and soe apects ofgUnime t a r relevto the

effective software for DCS. Despite the achievements of

. discussion of the interoperation framework. The modeling the commonality and variability among the
interoperation framework is presented in section 3 with products, a generator to generate a specific product based
two alternative implementations (informal and formal). on the feature model specification, and the implementation
Some representative related work is given in section 4. The of reusable components from which the product can be
paper concludes in section 5. generated. This concept of paradigm shift is the core

design of UniFrame as well as the interoperation

2. Overview of UniFrame framework in UniFrame.

Capture, formalize, model and reuse engineering
Before we detail the interoperation framework, we first knowledge. Any software system has domain-specific

introduce the basics of the UniFrame. concepts and logic, a structure, and an implementation in

concrete technologies. Decisions made on how to produce
2.1. Fundamental Theses of this Framework the software using those concepts comprise the

engineering knowledge. In current software engineering
Modularity and component-based software practice (single system development), the engineering

engineering. Component-based Software Engineering knowledge is scattered among: I) the business executives,
(CBSE) and related technologies have demonstrated their 2) the domain experts, 3) the software managers and
strength in recent years by increasing development engineers, and 4) the software developers. During the
productivity and parts reuse. The implementation of software production process, the decisions made by all
UniFrame is built upon the maturity of component-based these participants contribute respectively towards: 1) the
software engineering [Szy02]. In our framework, features goal of the system, 2) detailed business logic of the
are standardized domain services. They are the smallest system, 3) specifications of software architecture and
and the most abstract units for reuse and re-construction, developers' role assignments, and 4) concrete software
One or more services are developed as a single development by applying different programming

* component. Given all the possible elementary services for languages and component-based technologies.
a business domain, a wide spectrum of systems can be However, when we move the development paradigm
generated by various combinations of services, to the product-line assembly, with the goal of
Components are registered to the native registry in their manufacturing the concrete software products from the
domain for later discovery, composition and trading. GDM automatically, the engineering knowledge specific to
Components are alive on the Internet, offering their that end product must be captured, modeled and formally
services, QoS assurance and associated price. The defined in a domain model to guide the automated
separation of reusable feature (asset) development in the manufacturing in the application-engineering phase.
domain engineering and the product configuration using The applicability of a domain is flexible. A domain is a
those assets in application engineering reflect the set of current and future applications that share a set of
fundamental discipline of the separation of component common capabilities and data [Kan90]. Based on the
development and component composition. principle of separation of concerns, we have encountered

different categories of domains in the process of
Software development paradigm shift: from single automated product generation [Zha02]:

application development to system family development.
System family engineering is also called Generative 1. Business domain: ontology for business concepts, logic
Programming [CzaOO] and Product-line Engineering and hierarchical structure.
[Cle0l], [SEI02], [Wei99] with the goal to automatically 2.Architecture domain: ontology for software architectural
generate concrete software products from a domain- patterns, software parts' functionality, role and
specification and reusable components. System family collaborations.
engineering has two levels: domain engineering and 3.Technology domain: ontology for implementation
application engineering [Kan98]. Domain Engineering is technologies, such as component models, programming
the activity of collecting, organizing, and storing past languages, security methods, and hardware platforms.
experience in building systems or parts of systems in a
particular domain in the form of reusable assets. The principle of autonomy and separation of concerns
Application engineering is the process of producing naturally shapes the categorization of those three

* concrete systems using the reusable assets developed domains. Different dimensions of engineering knowledge
during domain engineering. In GP, a model of a family of are built and maintained by different group of people with
products is called the Generative Domain Model (GDM). different education background and talent set. This gives
The major constitutes of a GDM are a feature model for them the opportunity to be more productive and

concentrate on the essence of their job. For example, domain features as software components with facilities of

architecture and technology domain builders are more Model Driven Architecture (MDA) [Fra03J. Components

likely to have computer science education than business are registered to native component model registries (e.g.,
domain developers. RMI registry, CORBA naming services registry). Along

with a natural hierarchy of business organizations, a set of

2.2. The Structure of the UniFrame Framework available components for an application are not limited to
reside on one computer, one network or one organization.

As shown in figure 1, there are two phases in They will be dispersed over the Internet. So, component
As : shown ain figure 1,thereng are t pphcastion- searching is one of the major concerns in UniFrame. The

UniFrame: domain-engineering and application- UniFrame Resource Discovery Service (URDS) [Sir02]
engineering. The domain-engineering phase simulates the

domain development of three-dimensional domains searches federated native component registries in the

(business domains [ZhaO4], architecture domains and business domain for matched components. Domain level

technology domains). As part of the activity in business development provides the meta-data and reusable assets

domains, designated programmers implement business for the application engineering.

F I

-- OW if

S....................................

Figure 1. An Overview of the UniFrame Framework

The application-engineering phase is the process of a dummy composition of a set of candidate components is
manufacturing concrete products from the business validated according to the feature model in the
domains. An order of a product is placed by using a user- architecture domain (no architectural violation) with any
friendly form such as HTML form, a GUI builder, a UMLi necessary architectural instrumentation code generated
model, a Generic Modeling Environment (GME) [GME] automatically. Finally, if there are any incompatibilities in
model or natural language. This order is translated into the the component implementation technologies, the
internal representation that can be used for validation and glue/wrapper code should be generated for the
initiating a search. We chose the XML for the internal interoperation.
representation. Then, the order is first validated according This paper will focus on the UniFrame interoperation
to the feature model in the business domain (no business framework that is called the Internet Component Broker
logic violation [Zha04]). If this validation succeeds, URDS (ICB), which is analogous to an Object Request Broker
is invoked for searching the implementation components (ORB). As opposed to providing the capability to generate
over the business domain space. When the URDS returns, the glue and wrapper necessary for objects written in

different programming languages to communicate
transparently, the ICB provides the interoperation for

nUnified Modeling Language, http://www.uml.org/

components implemented in diverse component models
and thus presents a collaboration vision one level above 1. UMM is first documented in natural language, and then
the ORB. For the interoperation of heterogeneous transformations can be applied to transform the informal

software components, ICB gives a vision of unified UMM specification to formal models, and finally to the

middleware. implementation software components [Bry03], [Lee02a],
[Lee02b].

2. UMM is developed as a design model (e.g., UML) or a
2.3. Unified Meta-component Model (UMM) domain-specific model (e.g., GME), then a MDA

approach is adopted to transform a business model to a
Because of the separation of component Platform Specific Model (PSM) [Fra03], which will

implementation and component assembly, a unified generate APIs, which will then be fine-tuned with
component introspective mechanism is needed for the concrete implementations.
integration of components developed in diverse 3. Components are developed first, and then UMMs are
technologies. The Unified Meta-component Model generated from the implementation via some tool

(UMM) [Raj00] is such a mechanism that provides an support.
ýbstraction for each component.

Our study has discovered that any individual feature Currently in our prototype, UMM is in a mix of natural
implementation (component) reveals four aspects of language and XML, and can be generated from a Platform
knowledge in regards to the assembly process: Independent Model (PIM) developed in GME [Cao03J.
computational, cooperative, deployment and economic The components are developed manually by the
aspects. As the domain grows, feature development would programmer conforming to the feature specifications.
span multi-organization, multi-region/country, multi-time
period, and multi-technology, which lends them a
distributed and heterogeneous nature. UMM can formally 2.4. Quality of Service (QoS)
and uniformly represent four aspects:

During component assembly, QoS is an important
1. UMM computational aspects indicate implemented concern to ensure that the generated product meets the

services, algorithms used, complexity, service contracts quality of service in the product order requirements. The
(component interface), service usage patterns. QoS requirements are expressed by selecting an
Parameters in UMM computational aspects identify appropriate set of parameters from a catalog of QoS
features in the business domain, parameters [Bra02], [Raj02]. We have summarized and

2. Components are developed for reuse. UMM published 18 QoS parameters. QoS is business related
cooperative aspects take care of the interrelationship (speed of the car, the aliveness of a supply chain),
among the components, the individual functionality role architecture related (structure integrity) or technology
contributing to the whole system, etc. Parameters in related (security level, turnaround time). QoS parameters
UMM cooperative aspects identify the entity and entity are divided into two categories: a) static (the value can be
relationship in the architecture domain, obtained from UMM, such as encryption level), b)

3. Some deployment issues such as component model and dynamic (the value can only be obtained from composition
programming language used, operating system run-time, such as turnaround time). By using event
platforms, underlying network quality, CPU and memory grammar [Aug97], the dynamic QoS provides dynamic
usage, etc., constitute the deployment aspect of the metrics that can be generated during the assembly time
UMM. UMM deployment aspects present the and be weaved into the glue/wrapper code. For example,
technology domain features for generating we can use AspectJ 2 to weave in the turnaround time
interoperation and deployment instrumentation code. testing probe into the glue/wrapper code.

4. UMM economic aspects straddle business, architecture It is always possible that URDS will find multiple
and technology domains, identifying the QoS components with compatible static QoS, and so the
parameters in each domain, dynamic QoS metrics will further refine the candidate set

to generate a system that meets the user's QoS
If the system assembly succeeds, a new UMM expectation of the final system.

specification will be generated as well by composing
* component UMMs so that the new product can act as a

reusable component for subsequent system generations. 2AspectJ project, Eclipse.org,

http://www.eclipse.org/aspecti/index.html
There are several ways to develop UMM:

0 belongs to this category because the IDL can be

3. Interoperation Framework in UniFrame considered as a PIM.
4. Three items listed above are all targeting translating the

communicators. However, source-to-source semantic
inthissectionfr r an dtailed discsion flofted b translation of software components, model (in the case

interoperation framework in UniFrame is given followed by of MDA), or APIs (in the case of CORBA), is laborious

two alternative ways of implementation. and error prone. The last possibility for interoperation is

translating the communications instead of
3.1. UniFrame lnteroperation Framework communicators. In terms of the size of the entity to be

translated, the communication in general is magnitudes
Potentially, there are several ways to establish the smaller than the communicators themselves. As a result,

interoperation among the heterogeneous and distributed translating communication is the lightest way of

software components: establishing interoperation, which is usually realized by

messaging. UniFrame has subscribed to this approach.
1. Source-to-source transformation: completely translate a

component into the technology of its communicator. Before detailing the UniFrame interoperation framework,
One example would be to use program transformation we first introduce the hypothesis we adopted. In the
for legacy component migration [Bax04]. This type of vision of UniFrame, components are autonomous and live
technology is usually used during the reengineering in their own technology territory. In such territory, there is

[Ben87] of legacy systems. But source-to-source a central registry where components can be registered and
transformation can not be used as a general solution for be invoked from. Components, after being manufactured,

the interoperation of heterogeneous software should be registered to the registry. By autonomy,

components because the complexity involved in components are totally blind to any other component
establishing interoperation is O(n 2). Considering there technologies. If a component is aware of its collaborators,

* are n components, n(n-l)/2 transformations are needed it is expecting its collaborators are of the same technology

for a full connected interoperation among n as itself. Each component offers some services that are
components. Despite the complexity, the source-to- identifiable in terms of business domain features.

source transformation is generally considered hard, and Thus, the interoperation means the communication

normally has to depend on a sophisticated commercial across the territory boundaries. There are two main tasks
tool such as the Design Maintenance System [Bax04]. in this communication: first, where is the component;

2. Transforming communicating components into a second, how do components communicate. URDS [Sir02]
common technology for interoperation will significantly takes care of the first task by searching federated

lower the interoperation complexity to O(n) since only n registries in the business domain for expected components
transformations are needed to transform n components and returning with the registry and the component ID.
into a common technology. An obvious example is This paper specifically addresses the second task. The

using XML as an exchangeable technology for interoperation is achieved by generating proxies

interoperation among different data forms. dynamically for invoking the components from the registry
3. Meta-interoperation is a specialization of the second and for replaying communications. Shown in the figure 2,

item above. The common entity in meta-interoperation is the communication between the component and the proxy
not (or not only) the common technology used, but falls in the same territory. The essential aspect of

(also) is the meta-data for the transformation. interoperation in this picture is to establish a common
Apparently, XML Meta-data Interchange (XMI) [Gro02] message protocol so that proxies can talk to each other
falls in this category, e.g., XMI defines a standard across the technology boundaries. In UniFrame, we use

schema for object-XML mapping so that different Simple Object Access Protocol (SOAP)3 for encoding and
objects can be mapped to a unified XML. MDA for the decoding parameters, data types and exceptions. The code

purpose of interoperation among different technologies that actually realizes the interoperation is called the
is another example. MDA defines the standard mapping glue/wrapper code, which includes two proxies.
from a common Platform Independent Model (PIM) to

different Platform Specific Models (PSMs) so that
components in one PSM can interoperate with. components in another PSM. CORBA [Vin97], [Corba]
for interoperation among distributed components that

are written in different programming languages also 3 SOAP Messaging Framework, W3C,

http://www.w3.org/TR/2003/REC-soapl 2-partl-20030624/

------ -ne&sage Proxy components, but to construct a generator that can
I , "--X--- cliet automatically generate glue/wrapper code for different

- ~ pairs of components on demand. To achieve that, the
generator needs to access both the knowledge for the

rdaI - tu CO]-3A world technology domains at the domain level and the
knowledge for a particular component implementation at
"the component level. For the technology domain, theE . generator has to know how many kinds of technology
domains (component model domains, programming
language domains, operating system platform domains,

Figure 2. The Interoperation Framework etc.) and what information in a particular technology
domain (e.g. Java programming language domain) for the

To be specific, the fundamentals of the UniFrame interoperation purpose. At the component level, the

interoperation framework are as follows: generator needs to know from the deployment aspect of
UMM what technologies are employed in a component
implementation.

1. The glue/wrapper establishes a binary connection for i nttion.

any wo etergenouscompnens. etwen tese In the next section, we will review an informal

two components, one must be the service requester, and implementation of the glue/wrapper code generator.

the other one must be the service provider. From this
perspective, no matter what is the underlying
architecture of the whole distributed system, client- Glue/Wrapper Code Generator
server is a general framework for a binary relationship of
a pair of communicating components. For the In this informal implementation, both the generator and

communication between the two components we need a the technology domain knowledge are written in Java.

* proxy server for the service requester, and a proxy client Domain knowledge is embedded in the java classes in the

for the service provider. The proxy server registers itself form of printing statements. Shown in figure 3, there are 4
to its component registry listening for the request different kinds of technology domains that the generator

coming from the service requester, and then translates directly accesses: proxy client, proxy server, programming
this request through the SOAP channel to the proxy languages, and operating systems. The proxy server and
client who decodes the SOAP message and invokes the the proxy client inherit the architecture knowledge from
ultimate service provider with the redirected service the architecture domain server and client respectively.
request. Two proxies also take the responsibility of There can be federated hierarchies in each technology
rmnaging the communication session. The use of domain. For example, for a specific component model, say
proxies attacks the problem of the heterogeneity of Remote Method Invocation (RMI)*, there is an RMIServer
component models; and SOAP/HTTP solves the that implements ProxyServer and extends RMI, also there
language heterogeneity and distribution, is an RMIClient (although not shown in figure 3) that

2. The glue/wrapper code realizes the interoperation at run implements ProxyClient and extends RMI. Then we will be
time, i.e., the existing component should not be modified able to generate both proxy server and proxy client for a
or recompiled. The glue/wrapper can be generated, RMI corrponent. A component model is usually abstract
compiled and bound dynamically during the and should be concretized by different vendor-specific
composition run time. technologies. For example, TAO [Har98] is a concretization

3. Because the semantics of business domain features are of CORBA, and JavaRMI is a concretization of RMI.
standardized and shared by all the feature There are some benefits in developing the generator in
implementation developers, each implementation can Java.
have slightly customized interfaces including different
naming strategies of parameters and methods, and the 1. By taking advantages of polymorphism, the generator is
variations on the parameters (only to a degree that the generic to any specific technology as it only deals with
translations can be done automatically for solving the interfaces.
variations). 2. By using Java reflection, we can dynamically load a

specific technology domain class as needed based on

The main challenge in realizing interoperation among
heterogeneous components is not the issue of 4 Java Remote Method Invocation (Java RMI),
constructing glue/wrapper code for a particular pair of http://java.sun.comiproducts/jdk/rmi/

0 the parameters in the component UMM. For example, if 3. The generator framework is extensible. We can extend

the UMM indicates the language used for two the framework with any programming languages,
components are Java and C++, then only the Java and operating systems and component models. In the case

C++ classes in programming language domains are of new technologies (a new component model, a new

loaded into the Java runtime environment. This will vendor-specific product for an existing component

drastically improve the performance of the generator model, etc.), we only need to modify the framework by

considering technology domains contain a wide variety adding the new technology domain subclass, and the

of classes. generator should remain unchanged.

00

Figure. 3 Then Seav Code Generator in Jav a

B n c artechnoalogy do I maikno ge pe giecifinno I rmai on C e q

base,14c we do not mean c onsructin a iomlte it- will beanobtcfordomanevotimon ndrus, n
spciictin ora aticula~rvr techoxylog. orth furtherprvent the generatorvfromvlig

itprin nth oteis m i alTe ths l , werverapieth

only some specific informati ron esr)i s neeed Surch Psrogamn G)[zO]ad)rdc-ieAcietr

cues toreisere and e ase/Wrper [Ceod Gero r [ein ovoat

fro acregstrycting a specificog componnt moelnowletoe atdefinnogy admodeing apecfaily onfopratoduct sonsqethat,
prcese SeoAP o mesagen aonspeuctifclnguage howpto prdut wib n ostancanbefgenrdoated avoutiomatiallydromen
copieiiandionvoke a prgamtinlar specifiopogramming th isfamily. Asee mhenertione ino setolvng2.1,tesse

languageroet and oerating systhem pltform; w arelher faTi dvemthis the ore design ofe Gnirameand

cmonent modelrdc specific clasmtin s pate.h andgrasmelasteinteroPer[Cationd frameworkineUniramiecthre
cnormpiation opinclds. rationaserad nok srer [le0] for02] theapica].Bilty of tGsecnooies tatith

Besidesgenertrying interperaifcomonen code,; theognertor glewappderiin cnodefor a pamiry of coponents sof pharticuar
hasothers rOPesposibiites suc as dynamiic Qagae ow tesigoehooisin product instance; nb gnr the glue/wrtiappero
systmpe monitoingk an sessamion n~agseific pro bemmn code forly thais etof copnsentsiof all, poesysibem

tonweave tnarourta ting ode into the family cdevelpmntod e paricl glue/wraper

gempnerated de proxiest(shown infigur 4ass Qopaver codasel instane cantbeogeainefratedwfomk the UnFamilyTh

class).e automato Uicaly

Figop.te 3 for the famplicaility of Gl/Pper cd isv

3.3eTwades thnertn Fneoprmaiation cofe Atomgeeated called/theapnerope frapatir fonGD (IMsent ofpriguare)

y oecraonsprib Cdtienachtaong dstaria ddoedesrgn technology domainsspecific ininctanc theluedngly
bastem donotoringand eonstructingnagem pletp e itcoillbeandie for modeledaom, dfoeention and ruse

specifiation. for a exartlew ar set Kc7 technology.Frthiut er forevn th geeamily fom evlvewippngod. fti

ntn tehe praviounds setionye hatesktinechoed outsoe pogammgl lan gg moblem, dominvesprifedre Geratine

olsofe implemefcnt oration innava.dHoweverrembedding syste domains, and diferetdscurity methodtdomains

benefitse proessages in Thefic language; code instance can be generated Mxomicil mel fhm

compnen Towadstel produciztseific cassomathead caswlleds the lnteroperation framewr (iGDM seeigure The
coplueWatinpptiCdGnrtons raM tioadles for feren applcabilty dofmaPins inhauding

Beie geeaigprooeai oe hegnrtrglu/ramming coduae for m airnsdifferents ofparaticula
has other presponsibilitiones suhave dynamche otesting sytehnoogiesins, one prdiffret istneuit mthod glu/wapper

generaionts an exalmpetto we caan uowevserJ emeding] tcnlge or aiyo lewrpe oe fti

the technology domain knowledge into a programming dme fain-se featur esede ofe Dpaicflfren tlehnoloye
language using printing statements tends to blur thediomen-ntcichnatogsf odifernt nt

S domains, which direct the variations among sentence of this language. The generator for the

glue/wrapper code instances. The generation of glue/wrapper code is the interpreter for the grammar that

glue/wrapper code for components in different is used to define the feature model. The terminal symbols

technologies depends on the domain-specific features of of the grammar are code fragments. The glue/wrapper

technology domains. In the IGDM, the reusable code is a string of code fragments.

components, from which the glue/wrapper code can be To apply successfully this theory and the

generated, are the code fragments of potential programming-language-oriented techniques to feature

glue/wrapper code. modeling, the first question to be answered is whether

In order to support the automated glue/wrapper code there exist concepts in feature models that are the

generation from the IGDM, we have adopted a formal counterparts of syntax and semantics in programming

modeling theory on feature modeling in the IGDM. The languages. The fact is these concepts do exist in the

feature model in the IGDM is defined as a language; the feature models, and are discussed below.

glue/wrapper code generated from the IGDM is a valid

-lerver len~t

IGDM

UW~~ specification [IUVM specification

for RMI Client 3Ifor cORA.erver

Technology domains

Figure. 4 The Formalization of Automated Glue/Wrapper Code Generation

I. The composition syntax is the structure of the programming languages, operating systems, message's

interoperable framework. The following context-free signature and type, security methods, and digital

derivations show part of the structure of the signatures are modeled as the attributes of the

glue/wrapper code to be generated. Currently, the components. Based on the different value of component

grammar we use to define IGDM feature model is called type and its parameters, different glue/wrapper should

TLG++ [Zha04]. The following code is in TLG++. For the be generated. In the following code fragments, the

notational syntax, the "," is for "and", and the ";" is for codes in bold are the parameters that indicate the

"or'. different features of technology domains. TLC,++
distinguishes itself from context-fee grammars is this

glueWrapper code proxyServer, feature of parameterization. The parameters are

proxyClient. evaluated while the syntax tree is built. The codes
proxyClient : technologyImports, underlined are the glue/wrapper code fragments

componentImports, invokeServer, enclosed in the double quotation mark. The code

clientCompilation, clientInvocation. fragments are the terminals of the grammar.

invokeServer : findRegistry,
getServerObject, initiateServer, findRegistry:

serverInvocationExceptions. where ComponentModel= corba,
...... "orb= org.omg.CORBA.ORB .init(args,

null) ;"

O 2. Static semantics constrains types of glue/wrapper code ProductTraderPackage
to be generated. In particular, the component model is "trading=TradingHelper. narrow

modeled as the type of the component; and

(orb. resolve initial references ("LCBT have jointly developed RMI-IIOP, a new version of RMI

rading")); ; that runs over IIOP and interoperates with CORBA ORBs
where ComponentModel = rmi, and CORBA objects programmed in other languages. To

S...... ; bridge CORBA and DCOM, the Object Management
where ComponentModel = j2ee Group (OMG) provides the interworking architecture

specifications regarding the mappings between DCOM
3. Dynamic semantics models the component composition and CORBA which includes: Interface Mapping, Interface

QoS that are affected by the component technologies. If Composition Mapping and Identity Mapping, etc. [RapO I].
the components are implemented in different Web services [New02] claims to be a means of
technologies, they will present different QoS values. interoperation among component models. Nevertheless,
The generated glue/wrapper code will also affect the web services achieve the interoperation by introducing
QoS, and should be part of dynamic semantics. Event yet more standards such as Web Service Definition
grammars [Aug97] are used to generate an event trace, Language (WSDL), Universal Description, Discovery, and
which acts as the QoS metric to be inserted into the Integration (UDDI), and SOAP. This does not completely
generated glue/wrapper code. solve the problem due to the inherited local autonomy and

the difficulty of the adoption of standards, whereas
UniFrame approaches the problem in a different way by

4. Related Work modeling existing technology domains.
As mentioned in section 3.1, MDA [Fra03] has

There have been some attempts towards achieving subscribed to the meta-interoperation approach. For
Therehaveb een smome attfemnts technowardoie vging example, for the interoperation between the web service

interoperability among different technologies emerging and Java, the system has to know the following three
prominent examples, besides the work mentioned in things: the platform-independent UML class model, the
section 3.1, are described below. UML-java mapping, the UML-SOAP/WSDL mapping. As

Middleware technologies such as CORBA [Corba] and with web services, MDA forces UML or MOF to be the

DCOM [Ses97] provide a communication infrastructure for standards for the interoperation.

a heterogeneous and distributed collection of objects.
Based on this infrastructure, objects can interoperate 5. Conclusions
across networks regardless of the language in which they
are written or the platform on which they are deployed. In this paper, we have discussed an interoperation
However such middleware or component models exclude framework for integration of heterogeneous and
the presence of others. UniFrame gives a vision of unified distributed software components. The target goal of this
middleware providing the interoperation not only among framework is the automated glue/wrapper code generation
the programming languages and platforms but also among during the component assembly time. This framework
the component models. The proxies in this paper are incorporates the following key concepts: 1) an
similar to the stubs/skeletons in CORBA. However, the introspective meta model (UMM) for the autonomous
concept of IDL in CORBA is elevated to the business components; 2) an explicit modeling of domain knowledge
feature model of this paper. The feature model in a of various technology domains instead of introducing new
business domain defines the semantics of features and standards for interoperation; 3) introducing the IGDM that
their interactions, and is shared by the feature models a family of glue/wrapper code to provide a formal
implementation developers. foundation for automated glue/wrapper code generation;

Some ad hoc approaches for interoperation between 4) a language-oriented way to formalize the IGDM so that
component models come out from the industry that are the glue/wrapper code generated from 13DM is a valid
targeting specific component model pairs. RMI is a sentence that can be generated from a grammar. The initial
language centric approach using JRMP (Java Remote experiments have been carried out to integrate
Method Protocol) for interactions between distributed components written in RMI and CORBA, and the
objects. RMI requires that the entire distributed glue/wrapper code can be automatically generated for their
application be programmed in pure Java. Sun5 and IBM 6

6 IBM developer Works, Java technology Standards RMI-IIOP,

url: http://www-1 06. ibm.com/develperworks/iava/rmi-
5 Sun Microsystems, Java RMI-IIOP Documentation url: iiop/summary.html

h~ty://iava.sun.com/fi2se/1.3/docs/euide/rmi-iiop/index.html

interoperation based on the informal implementation [Gro02] T. Grose, G. Doney, S. Brodsky, Mastering XMI,
approach. Future work will be to design and extend our John Wiley & Sons, Inc., 2002.
grammar notation to formalize IGDM. Experiments are also [Fra03] D. S. Frankel., Model Driven Architecture: Applying
done on applying this framework to other component MDA to Enterprise Computing. Wiley Publishing, Inc.,
models such as Net, DCOM, J2EE, Web Services, mobile 2003.
agents, and as well as wireless component models [Sha03]. [GMEJ GME User's Manual. The Institute for Software

Integrated Systems, Vanderbilt University.
6. Acknowledgement http://www,.isis.vanderbilt.edu/Proiects/pme/Doc.html

[Har98] T. Harrison, D. Levine, D. Schmidt, "The Design andThis research is supported in part by the U. S. Office Promneo eltm OB vn evc"

of Naval Research under the award number N00014-01-1- Compute om na tioe Vol1, Noe4, 1998

0746. Computer Communications, Vol. 21, No. 4, 1998

[Kan90] K. C. Kang, S, G. Cohen, J. A. Hess, W. E. Novak, A.

7. References S. Peterson, "Feature-Oriented Domain Analysis
(FODA) Feasibility Study", Technical Report,
CMU/SEI-90-TR-2 1, 1990.

[Aug97] M. Auguston, A. Gates, M. Lujan, "Defining a Program

Behavior Model for Dynamic Analyzers," Proc. [Kan98] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh,
SEKE '97, 9th Int. Conf. Software Eng. Knowledge "FORM: A Feature-Oriented Reuse Method with
Eng., pp. 257-262, 1997. Domain-Specific Reference Architectures," Annals of

[BaxO4] 1. Baxter, C. Pidgeon, M. Mehlich, "DMS: Program Software Engineering 5, pp. 143-168, 1998.

Transformations for Practical Scalable Software [Kic97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Evolution", to appear in the Proc. of 2004 Videira Lopes, J. M. Loingtier, J. Irwin, "Aspect-
International Conference on Software Engineering Oriented Programming", Proc. of European Conference
(ICSE), 2004. for Object-Oriented Programming (ECOOP), pp. 220-

[Ben87] S. Bendifallah and W. Scacci, "Understanding Software 242, Springer-Verlag, 1997.
Maintenance Work", IEEE Transactions on Software [Lee02a] B.-S. Lee, B. R. Bryant, "Automated Conversion from
Engineering, Vol. 13, No. 3, 1987. Requirements Documentation to an Object-Oriented

[Bra02] G. J. Brahnmath, R. R. Raje, A. M. Olson, M. Formal Specification Language", Proc. of ACM
Auguston, B. R. Bryant, C. C. Burt, "A Quality of Symposium on Applied Computing (SAC), pp. 932-
Service Catalog for Software Components," Proc. 936, 2002.
Southeastern Software Engineering Conf, pp. 513- [Lee02b] Lee, B.-S. and Bryant, B. R., "Automation of Software
521,2002. System Development Using Natural Language

[Bry03] B. Bryant, B.S. Lee, F. Cao, W. Zhao, C. Burt, J. Processing and Two-Level Grammar," Proc. 2002
Gray, R. Raje, A. Olson, M. Auguston, "From Natural Monterey Workshop Radical Innovations of Software
Language Requirements to Executable Models of and Systems Engineering in the Future, 2002, pp. 244-
Software Components", Proc. of the Monterey 257.
Workshop on Software Engineering for Embedded [New02] E. Newcomer, Understanding Web Services: XML,
Systems: From Requirements to Implementation, pp. WSDL, SOAP, and UDDI, Addison-Wesley, 2002.
51-58, 2003. [Raj00] R. R. Raje, "UMM: Unified Meta-object Model for

[Cao03] F. Cao, Z. Huang, B. Bryant, C. Burt, R. Raje, A. Open Distributed Systems." Proc. ICA3PP 2000, 4th
Olson, M. Auguston. "Automating Feature-Oriented IEEE Int. Conf Algorithms and Architecture for
Domain Analysis," Proc. of the 2003 International Parallel Processing, 2000, pp. 454-465.
Conference on Software Engineering Research and [RajO0] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson,
Practice (SERP'03), CSREA Press, pp. 944-949, 2003. C. C Burt, "A Unified Approach for the Integration

[Cle0l] P. Clements, L. Northrop, Software Product Lines: of Distributed Heterogeneous Software Components,"
Practice and Patterns, Addison-Wesley, 2001. Proc. Monterey Workshop Engineering Automation for

[Corba] Common Object Request Broker Architecture Software Intensive System Integration, pp. 109-119,
(CORBA), http://www.corba.orp/ 2001.

* [CzaOO] K. Czamecki, U. W. Eisenecker, Generative [Raj02] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson,
Programming: Methods, Tools, and Applications, C. C. Burt, "A Quality of Service-Based Framework
Addison-Wesley, 2000. for Creating Distributed Heterogeneous Software

Components," Concurrency and Computation:

Practice and Experience, Vol. 14, No. 12, pp. 1009-
1034, 2002.

[Rap0l] Raptis, K., Spinellis, D., Katsikas, S. "Multi-
Technology Distributed Objects and their Integration,"
Computer Standards & Interfaces, Vol. 23, 157-168,

2001.

[Sha03] P. V. Shah, B. R. Bryant, C. C. Burt, R. R. Raje, A.
M. Olson, M. Auguston, "Interoperability between
Mobile Distributed Components using the UniFrame
Approach," Proc. of the 41st Annual ACM Southeast
Conference, pp. 30-35, 2003.

[SEI02] Software Engineering Institute, A framework for
software product line practice -version 3.0, 2002,

htti://www.sei.cmu.edu/plp/framework.html

[Ses97] R. Sessions, COMandDCOM. Microsoft's Vision for
Distributed Objects, New York, NY: John Wiley &
Sons, 1997.

[Sir02] N. N. Siram, R. R. Raje, B. R. Bryant, A. M. Olson,
M. Auguston, C. C. Burt, "An Architecture for the
UniFrame Resource Discovery Service," Proc. SEM
2002, 3d Int. Workshop Software Engineering and
Middleware, Springer-Verlag LNCS, Vol. 2596, pp.
20-35, 2002.

[Szy02] C. Szyperski, Component Software: Beyond Object-
Oriented Programming, 2 d edition, Addison-Wesley
Longman, 2002.

[Vin97] S. Vinoski, "CORBA: Integration Diverse
Applications Within Distributed Heterogeneous
Environments", IEEE Communications, Vol. 14, No. 2,
1997.

[Wei99] D. M. Weiss, C. T. R. Lei, Software Product-line
Engineering: A Family-Based Software Development
Process. Addison-Wesley, 1999.

[Zha02] W. Zhao, B. R. Bryant, F. Cao, R. R. Raje, M.
Auguston, A. M. Olson, C. C. Burt. "A Component
Assembly Architecture with Two-Level Grammar
Infrastructure", Proc. of OOPSLA'2002 Workshop
Generative Techniques in the Context of Model Driven

Architecture, 2002.
http://www.softmetaware.com/oopsla2OO2/zhaow.pdf

[Zha04] W. Zhao, B. R. Bryant, R. R. Raje, M. Auguston, C.
C. Burt, A. M. Olson, "Grammatically Interpreting
Feature Compositions", to appear in the proceedings
of the 16'h International Conference on Software
Engineering and Knowledge Engineering (SEKE'04),
2004.

* Formal Specification of Generative Component Assembly
Using Two-Level Grammar *

Barrett R. Bryant Mikhail Auguston Rajeev R. Raje
Carol C. Burt Andrew M. Olson

Computer/Information Sci. Computer Science Computer/Information Sci.
Univ. Alabama-Birmingham New Mexico State University Indiana Univ. Purdue Univ.

Birmingham, AL 35294, USA Las Cruces, NM 88003, USA Indianapolis, IN 46202, USA

bryant@cis.uab.edu mikau @cs.nmsu.edu rraje@cs.iupui.edu
cburt@cis.uab.edu aolson@cs.iupui.edu

ABSTRACT 1. INTRODUCTION
Two-Level Grammar (TLG) is proposed as a formal spec- The recent shift in the focus of OMG (Object Manage-
ification language for generative assembly of components. ment Group) to "Model Driven Architecture" (MDA) [10] is
Both generative domain models and generative rules may a recognition that to create mechanized software and bridg-
be expressed in TLG and these specifications may be auto- ing of component architectures requires standardization not
matically translated into an implementation which realizes only of infrastructure but also Business and Component
an integration of components according to the principles of Meta-Models. This emphasizes the fact that a compre-
the Unified Meta-component Model (UMM) and Unified Ap- hensive meta-model, that seamlessly encompasses hetero-
proach (UA) to component integration. Furthermore, this geneous components by capturing their necessary aspects
implementation realizes Quality of Service (QoS) guarantees including Quality of Service (QoS) and associated guaran-
by means of static QoS verification at the time of system as- tees, is needed for creating future generation of distributed
sembly, and dynamic QoS validation on a set of test cases. systems. The UniFrame project proposes a Unified Meta-

component Model (UMM) [11] for distributed component-
based systems, and a Unified Approach (UA) [11] for in-

Categories and Subject Descriptors tegrating these components. Component development and

D.2.1 [Software Engineering]: Requirements/Specifications- deployment starts with a UMM requirements specification of

languages, tools; D.2.11 [Software Engineering]: Soft- a component from a particular domain. This specification

ware Architectures-languages; D.2.12 [Software Engineer- is natural language-like and indicates the functional (i.e.,
ing]: Interoperability--distributed objects computational) and non-functional (i.e., QoS parameters)

features of the component. This specification is then refined
into a formal specification, based upon the theory of Two-

General Terms Level Grammar (TLG) [5]. Generative domain models and

Languages generative rules for system assembly [6] may be expressed in
TLG and these specifications may be automatically trans-
lated into an implementation which realizes an integration

Keywords of components.
Component-based software, formal specification, generative
programming, Two-Level Grammar 2. THE UNIFIED APPROACH

The distinctive features of the Unified Approach are:
*This material is based upon work supported by, or in part
by, the U. S. Army Research Laboratory and the U. S. Army a The developer of the desired distributed system presents
Research Office under contract/grant numbers DAAD19-00- to this process a system query, in a structured form
1-0350 and 40473-MA, and by the U. S. Office of Naval Re- of natural language, that describes the required char-
search under award number N00014-01-1-0746. acteristics of the distributed system. The query is

processed using the domain knowledge (such as key
concepts from a domain) and a knowledge-base con-
taining the UMM description of the components for

Permission to make digital or hard copies of all or part of this work for that domain. From this query a set of search param-
personal or classroom use is granted without fee provided that copies are eters is generated which guides "head-hunter" agents
not made or distributed for profit or commercial advantage and that copies for a component search in the distributed environment.

~ bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific Head-hunters serve to locate the components which are
permission and/or a fee. needed to complete the requested system [12].
SEKE '02, July 15-19, 2002, Ischia, Italy.
Copyright 2002 ACM 1-58113-556-4/02/0700...$5.00. A set of potential components is collected for that do-

- SEKE '02 - 209 -

Natural Language Query
(Function and Non-functional Requirements)

Application GDM ti o n) I distributed over wide area networks, bridges the gap be-
I Atween socket-level QoS and distributed object level QoS, em-

Ser aphasizing specification, measuring, controlling, and adapt-
Component SeachPa.......ing to changes in QoS. RAPIDware [8], an approach to

loter-conoeted World of Components • component-based development of adaptable and dependable
hith ..MM Descriptioteadhuns middleware, uses rigorous software development methods to

support interactive applications executed across heteroge-
A Set of Selected Components for Application neous networked environments. ProcessNFL [9] is a language

Locally Supplied Components for describing non-functional properties of software, which
(if needed) System Assembly may include QoS properties. The Unified Approach is con-

A Possible System 'ntnumented with of Heterogene.tou cerned not only with specifying QoS properties of compo-
A Possibe Sysoemineteumetedewit

Event Grammars Components nents, but also to assure satisfaction of these properties in
(in nlG) an implementation resulting from assembling the compo-

User-provided Test Cases- System Execution and Validation nents. It should be noted that the assurance of QoS (as

4 described above) indicates that a component can guarantee
Final System appropriate values for its QoS parameters in an 'ideal' sit-

e1: System Assembly in UniFrame uation. This does not guarantee that a component will be
able to either provide this QoS under failure circumstances
or will automatically adjust its QoS to hide the failures. For

main, each of which meets the Quality of Service (QoS) the failure situations, the ideas provided by Aster, QuO, or

requirements specified by the developer. QoS require- RAPIDware can be incorporated.

ments are expressed in terms of a catalog of parameters
established for this purpose [4]. After the components
are fetched, the system is assembled according to the 3. TWO-LEVEL GRAMMAR SPECIFICA-
generation rules embedded in the generative domain TION
model. Essentially, the generated code constitutes the Two-Level Grammar (TLG) is a formal notation based
glue/wrapper interface between the components. upon natural language and the functional, logic, and object-

Along with the generated system will be a formal UMM oriented programming paradigms. The "two levels" are two

specification of the generated system so that it may context-free grammars defining the set of type domains and

be used in subsequent assemblies. This formal UMM the set of function definitions operating on those domains,

specification will also be a basis for generating a set respectively. These grammars may be defined in the context

of test cases to determine whether or not an assembly of a class in which case type domains define instance vari-
tsatiasfes the desirmned w r ables of the class and function definitions define methods ofsatisfies the desired QoS. the class. The TLG formalism is used to specify the gener-

Static QoS parameters (e.g. dependability of the com- ative rules needed for component assembly and the output
ponent) are processed during generation time. Dy- of the TLG will provide the desired target code (e.g., glue
namic QoS parameters (e.g. response time of the com- and wrappers for components and necessary infrastructure
ponent) result in instrumentation of generated target for distributed run-time architecture). All of this is imple-
code based on event grammars [1, 2], which at run mented according to the process for translating TLG speci-
time produce the corresponding QoS dynamic metrics fications into executable code [5].
which may be measured and validated. We illustrate the formal specification of generative rules

using TLG by means of a simple bank account manage-
QoS parameters require instrumentation necessary for the ment system. The specification of a bank account should

run-time QoS metrics evaluation. Based on the query or include its attributes and the operations it should perform,
informal requirements, the user has to come up with a rep- such as check balance, deposit, or withdraw. Assume that
resentative set of test cases. Next the implementation is the GDM in this example contains a rule for system assem-
tested using the set of test cases to verify that it meets the bly that specifies that a Bank Account Management Sys-
desired QoS criteria. If it does not, it is discarded. After tem consists of one of each of the two component types,
that, another implementation is chosen from the component AccountServer and AccountClient, each of which follows the
collection. This process is repeated until an optimal (with bank account feature model. Further, let there be two in-
respect to the QoS) implementation is found, or until the stances of AccountServer and one instance of AccountClient.
collection is exhausted. In the latter case, the process may Server components are heterogeneous - JavaAccountServer
request additional components or it may attempt to refine adheres to the Java-RMI model and has methods javaDeposit,
the query by adding more information about the desired so- javaWithdraw, and javaBalance, and QoS parameters
lution from the problem domain. If a satisfactory implemen- Availability > 85% and Response Delay < 30 ms; while
tation is found, it is ready for deployment. The complete CorbaAccountServer uses the CORBA model and has meth-
view of this system is shown in Figure 1. ods corbaDeposit, corbaWithdraw, and corbaBalance, and

A few attempts have been made to incorporate QoS into QoS parameters Availability > 90% and Response Delay <
component-based software systems. The Aster project [7] 10 ms. The client, JavaAccountClient, is developed by us-. uses architectural descriptions of components and their in- ing the Java-RMI model, with calls to server depositMoney,
teractions, including non-functional properties, to customize withdrawMoney, and checkBalance, and QoS parameters
middleware. Quality Objects (QuO) [3], a framework for Availability > 90% and Response Delay < 50 ms. The
providing QoS to software applications composed of objects goal is to assemble a bank account management system from

- SEKE '02 - 210 -

these available components. generate java code OperationMapping using corba. Queries are stated in a structured form of natural lan- CorbaPackageName :=
guage. The general form of a query is to request creation OperationMapping get corba package name,
of a system that has certain QoS parameters. The name of CorbaObjectClass :=
the system is important in identifying the application do- OperationMapping get corba object type,
main and the QoS parameters should also follow the cata- ClassName := OperationMapping get class name,
log standards. A sample query for the above example can JavaClassName := Java 11 ClassName,
be informally stated as: Create a bank account management CorbaObjectName := object I1 ClassName,
system that has availability Ž 50% and response delay < 100 SetUpCode := ComponentModel generate java code,
ms. This query requires the satisfaction of one static and Operations
one dynamic QoS parameter. From the query and the avail- generate java code for OperationMapping,
able knowledge in the GDM associated with bank account return
management systems, a query will be formulated for a head- import CorbaPackageName .
hunter in the UMM. In response, the headhunter will dis- public class JavaClassName {
cover the three components and their QoS properties. Note private CorbaObjectClass CorbaObjectName
that the availability QoS parameter is used to screen poten- // initialize CORBA client module
tial components at the time they are retrieved. The catalog public void init () f
specification for this parameter suggests that the availabil- SetUpCode
ity criteria should be multiplied, so the availability of the I
Java-Java system is 76.5% and for the Java-CORBA system Operations
81%, both meeting the stated criteria.

TLG is used as the formalism for both the UMM and
generative rules. The UMM formalization establishes the
context for which the generative rules may be applied. TLG The class structure required by the Java implementation
functions include generative rules for construction of wrap- consists of a function mit to set up the CORBA ORB
per/glue code and event grammar instrumentation to assure and the operations needed in the server. This includes the
the QoS of the bank account record management system. code to initialize the CORBA object so that future oper-
The GDM for bank account management systems will be ations can refer to it. It is necessary to first extract the
described according to this template, including both gener- names of the GORBA package, class of the CORBA object
ation rules and QoS parameter processing. to be referenced within the package, and the name of the

* A sampling of TLG rules which may be used to generate class itself. These are all stored in the OperationMapping.
the appropriate glue/wrapper code to connect the compo- The name of the Java class generated is simply the string
nents of the bank account management system is presented "Java" concatenated 1 with the name of the server class,
below. These rules are based on selecting from the GDM i.e., JavaCorbaAccountServer. The name of the CORBA
for bank account management systems the appropriate sys- object is generated in a similar way. For simplicity, only the
tem model for this two-component DCS. The generation rule case where the class is to contain a single method is shown.
to produce Java code for two UMM models representing a Multiple methods are handled similarly.
client and server, respectively, is expressed using a TLC generate java code for
function which has a signature followed by a set of sub- OperationNamel ArgumentListl ReturnType
functions to be executed when the main function is called. maps to
Function keywords are indicated in bold while class/object OperationName2 ArgumentList2 Return7ype
names are italicized. JavaReturnType := java type of ReturnType,

generate system from ClientUMM and ServerUMM: JavaArgumentList :=
ClientOperations :- ClientUMM get operations, list all Argument from ArgumentListi
ServerOperations :- ServerUMM get operations, mapped to JavaArgument
OperationMapping := by function java argument of

map ClientOperations into ServerOperations, Argument is JavaArgument,
ComponentModel := JavaArgumentListDefinition :=

ServerUMM get component model, separate JavaArgumentList by
generate java code for OperationMapping OperationCall := generate java code forge ine javaonen . OperationName2 ArgumentListl ReturnnTpe,

using ComponentModel. return

The main tasks are to map client operations onto server op- public JavaReturnType OperationNamel
erations, e.g., depositMoney in JavaAccountClient maps to (JavaArgumentListDefinition)
corbaDeposit in CorbaAccountServer or to javaDeposit in EventTrace . setBeginTime (;
JavaAccountServer, and then generate the code to imple- OperationCall
ment this mapping. The next set of rules describes the EventTrace setEndTime);
specifics of generating CORBA code in Java to implement EventTrace calculateResponseTime 0);
the mapping that arises by integrating the JavaAccountClient

* with the CorbaAccountServer, including the mechanism for
generating individual methods. The generated code is dis- 'The TLG concatenation operation (I1) differs from juxta-
tinguished from types (variables) and function keywords by position in that it does not produce a space between the
using a typewriter font. operands.

-SEKE'02 - 211 -

This generation assumes that the methods have the same re- automatic integration of software components, based on their. turn type and so the main task is to express the arguments advertised QoS, in such a way that it meets the QoS con-
of the first operation in terms of Java syntax, generate the straints specified by the user. UniFrame facilitates semi-
appropriate method call, and instrument the code with the automatic construction of such a system. A simple case
event grammar mechanism to measure the response time. study is provided in this paper for illustration, but the prin-
The former is accomplished by using a TLG list compre- ciples of the proposed approach can be applied to larger
hension to map the arguments in ArgumentListl into corre- applications.
sponding Java arguments represented by JavaArgumentList.
Each Argument from ArgumentListl is mapped into a JavaAr- 4. REFERENCES
gument using the function java argument of Argument is
JavaArgument. There is a subtlety here in that JavaArgu- [1] M. Auguston. Program behavior model based on
mentList is an abstract syntax representation of the desired Event Grammar and its application for debugging
argument list and so this must be made into concrete syntax automati c D nd t Works Automated
using the separate operation which adds the appropriate ggig, pag
commas in between the argument declarations. The appro- [2] M. Auguston. Tools for program dynamic analysis,

priate method call is handled by the rule below, testing, and debugging based on event grammars. In
Proc. SEKE 2000, 12th Int. Con!. Software

generate java code for Engineering Knowledge Engineering, pages 159-166,
OperationName ArgumentList Return7ype 2000.

IdList := list all Argument from ArgumentList [3] BBN Corporation. Quality Objects (Quo),
mapped to Id by http://www. dist-systems. bbn. com/tech/QuO, 2001.

function argument id of Argument is Id, [4] G. J. Brahnmath, R. R. Raje, A. M. Olson,
IdListInCall := separate IdList by , , M. Auguston, B. R. Bryant, and C. C. Burt. A quality
return CorbaObjectName . OperationName of service catalog for software components. In Proc.

(IdListInCall);. (SE)2 2002, Southeastern Software Engineering Conf.

Again a list comprehension is used to extract the arguments (to appear), 2002.

from the argument list, this time only the identifier part [5] B. R. Bryant and B.-S. Lee. Two-Level Grammar as

(achieved by function argument id of Argument is Id). an object-oriented requirements specification
Likewise, the abstract syntax representation must be made language. In Proc. 35th Hawaii Int. Conf. System

concrete by comma separators. Sciences, 2002.
* Finally, the event grammar instrumentation is added to [6] K. Czarnecki and U. W. Eisenecker. Generative

measure the time at the beginning of the server method call Programming: Methods, Tools, and Applications.
and again at the end so that the actual response time can Addison-Wesley, 2000.
be evaluated against the required QoS (< lOOms). The QoS [7] INRIA-Rocquencourt. ASTER: Software Architectures
metrics for "response delay" mean execution time for each for Distributed Systems, http://uwuw-rocq. inria.fr/
method call within the server or client, and require the in- solidor/work/aster. html, 2001.
strumentation of each generated wrapper for the client/server [8] Michigan State University. RAPIDware:
method call with auxiliary functions able to check the clock Component-Based Development of Adaptable and
at the beginning and at the end of method call, calculate Dependable Middleware,
the duration, and submit it to the execution monitor (also http://www.cse.msu. edu/rapidware, 2001.
generated as a part of instrumentation). We assume that [9] N. S. Rosa and P. R. F. Cunha and G. R. R. Justo.
these are taken care of by a class called EventTrace. Each processnfl: A language for describing non-functional
of the two example systems will be implemented with the properties. In Proc. 35th Hawaii Int. Conf. System
code for carrying out event trace computations according to Sciences, 2002.
test cases which must be supplied by the user. These test [10] Object Management Group (OMG). Model Driven
cases will be executed to verify that the bank account man- Architecture: A technical perspective. Technical
agement system satisfies the QoS specified in the query. If report, OMG Document No. ab/2001-02-01/04,
the system is not verified, it is discarded. This verification February 2001.
process is carried out for each of the generated bank account [11] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson,
management system (two in the above example). Then the and C. C. Burt. A unified approach for the integration
one with the best QoS is chosen, in the above example the of distributed heterogeneous software components. In
CorbaAccountServer and JavaAccountClient combination. Proc. Monterey Workshop Engineering Automation

For the example, the following code for the depositMoney for Software Intensive Systems, pages 109-119, 2001.
function would be produced. [12] N. N. Siram, R. R. Raje, B. R. Bryant, A. M. Olson,

public void depositMoney (float ip) { M. Auguston, and C. C. Burt. An architecture for the
EventTrace . setBeginTime 0; UniFrame Resource Discovery Service. In Proc. SEM

objectCorbakccountServer . deposit (ip); 2002, 3rd Int. Workshop Software Engineering
EventTrace . setEndTime O; Middleware (to appear), 2002.
EventTrace . calculateResponseTime ();

In the future, the efficient generation and update of a
distributed computing system will require at least a semi-

- SEKE'02 - 212 -

SAnalyzing the Web Services and UniFrame Paradigms'

Natasha Gupta2 Rajeev R. Raje 2 Andrew Olson2 Barrett R. Bryant 3 Mikhail Auguston 4 Carol Burt 3

Abstract
The software realization of today's distributed systems often require combining of heterogeneous software
components, each offering a specialized service. This heterogeneity necessitates a paradigm for the interoperation of
different components. Various models and approaches have been proposed to facilitate a smooth interoperation.
Web Services and UniFrame are two such paradigms. This paper presents analyses of these two alternatives,
thereby, indicating their similarities and differences.

1 Introduction
The evolution in the field of computing has shifted its paradigm from a centralized one to a distributed one. Hence,
the target environment is no more a centrally managed, but concerned with collaboration, data sharing, and other
new modes of interactions involving distributed resources. This necessitates the availability of technologies and
solutions that can effectively and efficiently integrate services across disparate systems. This integration can be
challenging because of the need to achieve various qualities of services when running on top of different native
platforms [1]. Innovations in this field have led to developments of many paradigms including Web Services (WS's)
[2], and UniFrame [3]. Each of these approaches has associated pros and cons. Web Services have emerged as a new
"Web Development Tool" which enables a web application to become more interactive, by providing means to
make it communicate at the middle-tier lever (business logic level) and provide a new platform to build software for
a distributed environment. UniFrame is a research project that aims to provide a framework that allows a seamless
interoperation of heterogeneous components. The purpose of this paper is to compare and contrast the Web ServicesO framework and the UniFrame.

2 Related Work

2.1.1 Enterprise Application Integration (EAI) Solutions
The EAI [4] solutions provide the infrastructures for an organization that take the integration technology from the
traditional point-to-point connections to a level that links multiple applications and databases internal to the
organization to share information and business processes. EAI typically uses middleware to connect to different
applications. A custom interface is built to link each separate application in the EAI system. Most EAI systems use
adaptors to connect applications. Several types of EAI exist, including data integration, business process integration
and method integration. However,.the integration that EAI solutions provide tends to be complex and expensive,
despite improving the overall communication. In addition, the EAI interfaces are not reusable and cannot be used by
a company to connect to their business partners whose applications fall outside the boundaries of the organization.
Web Services overcome this limitation by providing a set of reusable interfaces to applications, which enables them
to interoperate with any other application (Web Service) using SOAP.

2.1.2 Business-To-Business (B2B) Solutions
The Internet has given birth to a "digital economy" [5]. In such an economy, B2B e-commerce provides a company
with an effective and efficient end-to-end process communication to buy and sell services in an economical way.
B2B relationships are often characterized by stringent requirements for security, auditability, availability, service
level agreements and complex transaction processing flows [1] in addition to the large technical differences that
arise between different organizations. B2B Integration has long been accomplished with the use of technologies like
Enterprise Data Interchange (EDI). EDI is a relatively arcane technology that requires substantial overhead on the

This material is based upon the work supported by the U.S. Office of Naval Research under award number N0014-01-1-0746.
2 Department of Computer and Information Science, Indiana University Purdue University Indianapolis, 723 W. Michigan St., SL280,

Indianapolis, IN 46202, USA, {nsgupta, rraje, aolson) @cs.iupui.edu.
3 Department of Computer and Information Sciences, University of Alabama at Birmingham, 1300 University Blvd., CH 115A, Birmingham, AL
35294, USA, (bryant, cburt) @cis.uab.edu.
4 Computer Science Department, Naval Postgraduate School, 833 Dyer Rd., SP517, Monterey, CA 93943, USA, maugusto@nps.navy.mil.

. part of the participants, and a clear understanding of the semantics of the messages exchanged. EDI
implementations, despite their "standardized" nature vary dramatically from business to business [6].

2.1.3 Open Grid Services Architecture (OGSA) for Distributed Systems Integration
OGSA builds upon the concepts and technologies from the Grid and Web Services communities. It [1] defines
standard mechanisms for creating, naming, and discovering transient Grid service instances; provides location
transparency and multiple protocol bindings for service instances; and supports integration with underlying native
platform facilities. It aligns the Grid technologies with the WS technologies, in particular the WSDL, to provide
mechanisms required for creating and composing sophisticated distributed systems, including lifetime management,
change management, and notification. OGSA has adopted Globus Toolkit as the underlying Grid technology
solution.
Each of these above mentioned approaches have specific objectives and are, aimed typically at particular application
domains. In the next section, two other approaches, Web Services and UniFrame that are generic in nature are
discussed.

3 The UniFrame and Web Services Nexus

3.1 UniFrame Overview
The main focus of UniFrame is to provide a comprehensive framework for the software realization of distributed
computing systems. It consists of (a) a meta-model for components and associated hierarchical set-up for indicating
contracts and constraints of the component, (b) an automatic generation of glue and wrappers, based on designer's
specifications to achieve interoperability, (c) a formal mechanism for precisely describing the meta-model, and (d)
the formalization of the notion of the quality of service of each component and an ensemble of components.

3.2 Web Services (WS) Overview
WS are based on existing protocols and technologies and provide a greater flexibility with respect to the. interoperability, the reuse and the development of applications in a distributed environment. The underlying idea
behind WS is to promote the "software as a service" paradigm. The use of open standards enables interoperability
between components. These standards are based on XML, which enables WS to communicate with other
applications in a programming language-, programming model-, and system software-neutral manner. XML forms
the basis of the three standards: SOAP (Simple Object Access Protocol), WSDL (Web Services Description
Language) and UDDI (Universal Description, Discovery and Integration) [5].

The next section indicates a comparison between the architectural aspects of the two frameworks, i.e., UniFrame and
Web Services, and then the section 4 describes a model-based comparison.

3.3 Architectural Comparison

The following table shows the architectural comparison between the two paradigms:

WEB SERVICES FRAMEWORK UNIFRAME

To provide a set of related standards which To create a comprehensive framework that
allow building of dynamic, loosely coupled unifies the existing and emerging distributed
systems composed of services, not bounded to component/service models under a common

OBJECTIVE any implementation and can be published, meta-model that enables the discovery,
described, located and invoked over a interoperability, and collaboration of
network, more generally World Wide Web components via generative software techniques

[3,7]

Universal Description, Discovery
and Integration (UDDI) Registry Query

Links to Web Services Description PlQ°S'Components

Language (WSDL) documents

GENERAL 1:1 Ej EjQueryiQos. stem GMB UDARHIENTUERA IF m ElELi

Service provider 4 Service consumer spec Builder URDS "aplctobusiness business applicatio~n I• icvrUniFrame esournsevce

GDMKB:

Simple Object Access Generative Domain

Protocol (SOAP) Messages Model Knowledge Base

0 Service Development and Deployment m Developing components using different
(leveraging different platforms to one current and future object models, such as,
standard of web services using different Java-RMI/CORBA/.Net/Web Services
Web Services development tools and n Informal and formal UMM (Unified Meta-
software provided by vendors) Component Model) specifications of each

- Formal description of services (WSDL) component

BASIC TASKS/ * Registration of services with UDDI a Querying the UniFrame for the system with
PROCEDURES (publish) desired Quality of Service parameters
INVOLVED - Discovery of services (Find) a Creation of an integrated system made out of

a Binding with the Service (Bind) discovered components0 Incorporation of necessary glue and wrappers
for QoS measurements and interoperation

w Checking to see if the test results of the
integrated system satisfy criteria or not

* Refine Query or select alternate components
to re-build and retest the integrated system

* Development using frameworks that * Components are developed using different

SERVICE/ support them (e.g. .NET) ,r using different standard object models
COMPONENT object models, which are then leveraged as n Deployment also under the same model with
DEVELOPMET services using the toolkits that support the extra infrastructure provided by UniFrame to
DEPLOYMENT technology support seamless interoperation and system

* Registering Services with the UDDI generation
public/private registry

DESCRIPTION OF Web Service Description Language UniFrame Meta-Component Model Description
SERVICES/ Document (WSDL file - XML) (UMM Specifications - informal text and XML)
COMPONENTS

Discovery through the UDDI Business or Discovery through an search process involving

DISCOVERY private registries (static registries) active entities - headhunters and active
registries [UniFrame Resource Discovery
Service (URDS) Framework]

INTER- XML (standard for data exchange) and SOAP Automatic generation of glues and wrappers
OPERABILITY OF (Simple Object Access Protocol)
SERVICES/COMP
ONENTS

SYSTEM a A hand-crafted approach wherein the A comprehensive model-based approach forms
INTEGRATION responsibility of integration lies with the the backbone of the system integration process

application developer by means of APIs right from the initial stages. The model follows
of the WS an architecture-centric, domain-based and a

• NpeA tn inpnrnnrntP WO, intprfnrp- nncl tPenhnnIncov-inriPnane•P•nt nnnrnAnlh Thp nrnrpsqe

integration capabilities within the may be manual, completely automatic or a mix
existing "application integrating" tools of both
and products

RELIABILITY OF Reliance on a third party (Web Service Reliability based on test cases and formalism
THE COMPOSED Auditors) which guarantees the reliability of a and a strong mathematical foundation of event
SYSTEM web service on basis of testing and traces and two level grammar

certification during its creation as well as
operational stage
0 Builds upon open text-based standards s No requirement of additional software tool to

(XML), thus aiding in interoperability build components

ADVANTAGES M Less additional cost involved in adoption, x Automatic generation of glues and wrappers
since employs existing infrastructure * Quality of Service validation and assurance
(Internet) and applications can be through event traces and formal domain
repackaged as Web Services knowledge; backed by a mathematical

foundation
w Use of aspect-oriented programming to

weave in the notion of QoS into the
ADVANTAGES framework distinguishes UniFrame(Active search process involving the notion of

"headhunters"
0 Relatively new; standardization in - No standardization reached yet

progress, hence, Web Services created w Experimentation and performance evaluation
with current tools will not be compatible at a large scale and in a realistic domain not
with the future technologies complete

LIMITATIONS a Use of text-based standards, XML, for
communication may affect performance in
some critical applications

0 No standardized methods devised for
assuring and validating Quality of Service;
Use of third party "web service auditors"

Some of the important points tabulated above are described in detail in the next few sections.

3.3.1 Discovery Services I
Web Services Discovery Process: The term discovery refers to the process of locating "Web Services" by means of
registries. This process is carried out by businesses searching for services offering specific functionalities. WS
Registries and Brokerages facilitate the discovery process and enable interactions between the service providers and
requesters. The discovery process is classified into two categories [4]:

"* Direct Discovery: This involves obtaining data from a registry, which is maintained by the service provider
itself.

"* Indirect Discovery: This involves obtaining data about a Web Service from a registry, which is maintained
by a third party.

A service provider publishes the WSDL document containing the description of its Web Service, with the UDDI,
which makes locations of such WSDL files available to a service requester. The Service Requester searches the
UDDI based on certain criterion, such as functionality or a Quality of Service (QoS) attribute. Once it discovers a
service, meeting its needs, it knows the method of accessing the Web Service by means of the WSDL file. It can
now communicate with the Web Service directly via SOAP messages.
There are a few other discovery technologies, which support the discovery of Web Services apart from the UDDI
specifications - ebXML and WS-Inspection for example. A Service developer/organization can combine these
technologies with UDDI in order to take advantage of the features of both. For example, UDDI currently does not
support a security model whereas ebXML does and so an organization can advertise its services through UDDI, on
the other hand store its trading agreements and contracts through ebXML.

. UniFrame Resource Discovery Service (URDS) Framework: The URDS architecture [8] provides a mechanism for
an automated discovery and the selection of components meeting necessary QoS requirements. URDS is designed to
act as a Discovery Service wherein new services are dynamically discovered while providing clients with a directory
style access to services. The discovery process in URDS is "administratively scoped", i.e., it locates services within
an administratively defined logical domain - in UniFrame a domain refers to industry specific markets such as
Financial Services, Medical domain and Manufacturing Services, etc. The URDS infrastructure consists of two
parts: (a) the Intemet Component Broker (ICB) and (b) Headhunters.
The ICB, in addition to performing the functions of a conventional broker, also ensures the authentication of the
principals of the system (Headhunters and Active Registries); cooperates with other ICB's deployed on the network
to provide matchmaking between service producers and consumers; and acts as a mediator between two components
adhering to different component models. A Headhunter is equivalent to a binder or trader in other models. However,
unlike the trader, here the onus of registering components lies with the headhunter and not on the components
themselves. Hence, the headhunter is capable of detecting the presence of service providers on the network, register
the functionality of these service providers and return a list of service providers, which matches the requirements of
the consumer requests forwarded by the Query Manager, to the ICB. The services are discovered by means of
Active Registries (discussed later), with which the services are registered. The discovery process employed could
vary from standard search techniques to broadcasts and multicasts to specific machines.

3.3.2 Service Descriptions
Web Service Description Language (WSDL) Document: It is an XML document for describing WS as a set of
endpoints operating on messages containing either document-oriented (messaging) or RPC-payloads. Service
interfaces are defined abstractly in terms of message structures and sequences of simple message exchanges and
then bound to a concrete network protocol and data-encoding format to define an end-point. Related concrete end-
points are bundled to define abstract end-points (services). The WSDL is extensible to allow description of end-
points and the concrete representation of their messages for a variety of different message formats and network
protocols [4].. UniFrame Meta-Component Model (UMM) Description: In UniFrame, components are autonomous entities. The
UniFrame description of a component is more comprehensive and specified in a natural language-like manner. It
indicates the functional (i.e., computational, cooperative and auxiliary aspects) and non-functional (i.e., QoS
constraints) features of the component. These specifications are then refined into a formal specification based on the
theory of Two-Level Grammar (TLG) and natural language specifications [9]. TLG specifications allow for a multi-
level interface for the component. These levels are: Syntactic, Behavioral, Synchronization and QoS.

3.3.3 Registries/Repositories
Web Services Registries: The Web Services framework supports two kinds of repositories - UDDI and WS
Brokerages.
UDDI." The UDDI standardization provides for "searchable Web Services Registries" which facilitate the storage,
discovery and exchange of information about businesses and their Web Services. UDDI is implemented in two
forms:
UDDI Business Registry: publicly accessible and maintained by Microsoft, IBM, Hewlett Packard and SAP.
UDDI Private Registry: accessible only to authorized users.
The various entities involved during the utilization of UBR (UDDI Business Registry) [4] are:

Operator Nodes: The organizations that host the implementation of the UDDI Business Registry are
Microsoft, IBM, SAP, and Hewlett Packard. UBR operates on the principle of "register once and publish
everywhere". This in turn implies a replication of the data within the operator nodes so that all instances of records
are identical with each node. Operator nodes synchronize their information at least every 12 hours.

Custodian: The custodian for a company is the operator node with which it publishes its web services. A
company can register and update its information only through its custodian. This prevents multiple versions of the
data from entering in the four different operator nodes.

Registrar: These organizations do not host implementations of the UDDI but act as assistants for
organizations in creating data (such as business and service descriptions) and publishing in the UBR.

Structure and Information Model of UDDI: XML forms the basis of the overall information structure of UDDI. which can be broadly divided into following information levels:
"White Pages: General information about the provider, such as its name, contact information and identifiers.
Yellow Pages: Categorization of the providers' information based on their services.

Green Pages: Technical information about the provider's services or products. Usually contains references
to the WSDL documents of the services enabling the client to know as to how to interact with the Web
Service.

UDDI supports certain APIs for the clients to use the registry. These include:
Publishing API - It supports the publish operation on the UDDI Registry. The access to this API is restricted to
authorized users only. Operator nodes implement a form of Authentication protocol to allow legal organizations to

access this API. By means of publishing API, an organization is able to execute commands to create and update
information in its operator node.
Inquiry API: Supports the find operation in three different patters (browse, drill-down and invocation). This API is
accessible to any individual on the UBR who wishes to locate a service or a kind of service.

WS Brokerages: The WS brokerages are web sites that house information about the available WS in the form of a
list, along with their web addresses. These brokerages can also supply additional services, which can include
advanced search capabilities based on category, organization name or schema type, service monitoring and service
support, which can include services-related resources such as a tool that validates WSDL documents. Examples of
some of the current Web Services Brokerages are: Allesta Web Service Agency, SalCentral Service, Xmethods and
serviceFORGE.

UniFrame Registries: In the case of UniFrame, the entity that houses the information about components developed
using a particular model is local to that component model. This entity is named "Active Registry", and is an
enhanced version of the native registry of the corresponding object model. It has features such as Activeness (an
ability to listen to multicast messages), Introspection and a Capability to detect failures of the Headhunters.

The conceptual difference that exists between registries of the two frameworks is in the way the registries participate
in the discovery process of the components. In the case of the WS framework, the onus of locating components lies

O in the hands of the service requesters. While in UniFrame, the emphasis is on the automated discovery process
provided by means of the URDS. Whether an organization needs to deploy one active registry per machine or one
per many, is not decided and could vary depending on the size and necessity of the organization. While a service
requester and publisher has to confirm to the underlying implementation of the UDDI registry as preferred by the
company hosting it, the Active Registry is not as rigid and constraint since it builds upon the same native technology
used for the development of components registered with it.

3.3.4 Quality of Service Assurances
Quality of Service Assurances in Web Services: Currently, service providers typically employ third parties to audit
their web services during the creation stage as well as for reevaluation of the service on regular basis. An auditor
achieves this in the form of testing and certification. Auditors may also be employed by the service requestors in
order to gain a kind of guarantee about the level of service offered by the Web Service. The entire scenario employs
"Service Level Agreements (SLA)" [4]. These are "legal contracts in which a service provider outlines the level of
service it guarantees for a specific Web Service". When customers purchase the Web services subscription, they
receive the services according to the quality-related contents specified by the SLAs. The service developer may
maintain the SLAs. As the contents of the SLA are determined by the participating entities, there are no formal
guidelines to specify the level of service a particular Web Service provides. The QoS requirements, which SLAs of
WS's outline, include availability, accessibility, integrity, performance, reliability, conformance to standards and
security.
Quality of Service framework of UniFrame: The approach followed by UniFrame can be stated as: building a
precise model of the system's behavior (based on event traces) and then providing a programming formalism to
describe the computations over these event traces. These are then applied in order to define different kinds of QoS
metrics. UniFrame's iterative approach to system assembly from components meeting user's query specifications is
based on constructive calculations of QoS metrics on representative set of test cases.
Quantifying the quality of service of the individual Commercial Off The Shelf (COTS) components, which compose
to form an integrated system with a predictable quality, is one of the critical part of the UniFrame Approach.
UniFrame provides a QoS Framework [5] for selecting, specifying and validating the QoS of components. The
features of the UniFrame QoS framework are:
* An existence of a QoS catalog [10] containing detailed descriptions about QoS attributes, their classifications,

their evaluation methodologies and the interrelationships with the other attributes.

. 0 An integration of QoS at the individual component and distributed system levels.
* The validation and assurance of QoS, based on the concept of event grammars [11].
* An investigation of the effects of component composition on QoS; involving the estimation of the QoS of an

ensemble of software components given the QoS of individual components.
* A QoS-centric iterative component-based software development process to ensure that the end product matches

both the functional and QoS specifications.
UniFrame takes a domain-based approach in the classification and the discovery of components. Since every domain
has its own constraints with respect to the QoS attributes, the QoS catalog aims to act as a checklist for any
component developer/user interested in identifying and validating QoS attributes.

3.4 Model-based Comparison
"• WS are all about XML and it being a text-based standard implies delays involved in parsing it, which may

prove vital in performance-critical applications. XML uses two sets of redundant tags to mark up every piece of
information it represents. The tags are usually written to be humanly readable, which makes the actual tags a lot
longer than they need to be. Also, one character in a Unicode document can be up to four bytes. Four bytes in
some other proprietary binary format used by technologies such as DCOM or RMI can hold a lot more
information than just one character. The ability to serialize the data over a connection, parse it quickly and
efficiently is what plays a vital role in applications interacting over the network [12]. UniFrame, on the other
hand, leverages the components in a way so that they are a part of an application while remaining within their
own object-model. This allows for more efficient ways of electronic communication.

"* HTTP is the preeminent protocol to transfer WS content and is allowed a free access through firewalls. HTTP,
although used almost everywhere because of its reliability and ubiquity, is also not the most efficient transport
protocol [12]. HTTP relies on a constant connection between the client and server when a request is made. This
constant connection causes an overhead in cases when the data that needs to be transferred is quite small.
However, in the WS's universe, many transactions are essentially asynchronous. This in turn implies that the
response of a web service request is not guaranteed. HTTP was not meant to deal with this kind of
asynchronicity. It also relies on only one side initiating communication and the other side only responding to the
request. This approach inhibits true peer-to-peer exchanges through Web services. A newer version of HTTP
aims to fasten communications by making use of compression, but some of the previous issues still need to be
pondered upon. Other protocols such as SMTP, over which Web Services can be implemented, still do not
provide a major breakthrough in this respect. As UniFrame does not attach itself to a specific protocol, it avoids
some of the drawbacks related to the usage of HTTP.

"• The only guarantee that a service requester has about a Web Service is through its SLA. No other explicit
mechanisms are mandatory in the WS world. Thus, the user of WS may or may not have a mechanism to
validate the QoS claims made by the creator of WS. Hence, a requester can terminate its contract if the WS's
fail to deliver what it claimed in its SLA. In contrast, UniFrame makes the notion of quality explicit during the
creation of components. It also provides the user means (by the use of event grammars, glues and wrappers) to
validate the QoS of any component made available by a supplier.

"* In the world of B2B, Web Services prove to be a major benefit since they provide the needed flexibility and
ability to operate across the Internet on completely disparate systems owned by completely independent entities.
However, in EAI solutions, the major drivers are not only interoperability but also speed and efficiency, and
with those requirements, Web services don't really seem to meet the need. Organizations globally are becoming
aware of the importance and need of integration across disparate platforms. An organization with numerous
applications needs EAI solution and corporations that are extending their processes with partners need B2B.
The future holds potential for a solution set that provides the functionality for both the requirements
frameworks. The UniFrame with its unbiased approach is an attempt in this direction.

"* Although UDDI registries, both public and private, offer a great deal of advantage in terms of an application
integration of the participating companies, they have their own set of limitations too. Firstly, because UDDI is
fairly new, it has not reached standardization in a complete way, which holds true for UniFrame as well.
Secondly, the UDDI Business Registry poses the question of data reliability. UniFrame does not involve the
notion of publicly accessible registries. The Active Registries only allow authorized entities to publish
components and interacts with the headhunter, thereby reducing the threats of data compromise. The discovery
mechanism of the UMM Framework involves the headhunter storing the data about the components after it
retrieves it from the Active Registries. The duration of the time interval after which this process repeats itself
can be controlled so as to guarantee the freshness of the data within the meta-repository of the headhunters.

UDDI registries, although describe web services, do not evaluate them [4]. It does not house the Quality-of-
Service information about a web service and requires an extensive search on the service-consumers part to do
so. UniFrame on he other hand, provides an extensive Quality-of-Service framework to do so.

3.5 Integrating Web Services into UniFrame
As outlined above, the WS and UniFrame differ in their approaches and associated implementation techniques.
However, they can complement each other to provide solutions for future distributed systems. UniFrame uses the
Generative Domain Model [13] to describe the properties of domain-specific components and to elicit rules for
assembling heterogeneous components. One possible approach to integrate WS in UniFrame could be to use WS as
a mechanism to wrap heterogeneous components. Due to the open nature of WS, such an approach will ease the task
of assembling heterogeneous components adhering to existing and new object models. Furthermore, since WS are
weak in representing the business semantics of application domains, this will also lead to the enrichment of WS
technology in terms of semantic representation by following a model driven approach for specific domain-specific
component models. UniFrame can then automatically generate WSDL from the models with the help of generators.

4 Conclusion
Developing component-based software solutions for distributed systems is an inherently complex task. Any
approach to tame these complexities must account for disparities that exist due to the existence of different object
models. Web Services and UniFrame are two approaches that propose effective solutions for future component-
based distributed systems. In this paper, an analysis of these two approaches has been presented. Although these two
approaches differ from each other, they can also complement each other and provide a comprehensive solution for
the creation of distributed systems. The proposed approach to integrate Web Services into UniFrame needs further
investigation and is being currently explored.

5 References
[1] Foster, I., Kesselman, C., Nick, J., Tuecke, S., The Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration, Open Grid Service Infrastructure WG, Global Grid Forum, 2002.
[2] World-Wide Web Consortium (W3C), "Web Services Activity", 2002, http://www.w3.org/2002/ws.
[3] Raje R., Bryant B., Auguston M., Olson A., Burt C., 2001, "A Unified Approach for Integration of Distributed
Heterogeneous Software Components," Proceedings of the 2001 Monterey Workshop Engineering Automation for
Software Intensive System Integration, pp. 109-119.
[4] Dietel, H., Dietel, P., DuWaldt, B., Trees, L., Web Services - A Technical Introduction, 2003, Prentice Hall,
Upper Saddle River, New Jersey 07458
[5] Dhbingra, V., "Business-to-Business Ecommerce," http://proiects.bus.lsu.edu/independent study/vdhingl1b2b.
[6] A Darwin Partners and ZapThink Insight, "Using Web Services for Integration",
http://www.xml.org/xml/wsi.pdf
[7] Raje, R. R., Auguston, M., Bryant, B. R1, Olson, A. M., Burt, C. C., 2002, A Quality of Service-based
Framework for Creating Distributed Heterogeneous Software Components, Concurrency and Computation: Practice
and Experience, vol. 14, pp. 1009-1034.
[8] Siram, N. N., Raje, R. R., Olson, A. M., Bryant, B. R., Burt, C. C., and Auguston, M., An Architecture for the
UniFrame Resource Discovery Service, Proceedings of the 3'd Int. Workshop Software Engineering and
Middleware, Springer-Verlag Lecture Notes in Computer Science, Vol. 2596, 2002.
[9] Bryant, B. R. and Lee, B.-S., "Two-Level Grammar as an Object-Oriented Requirements Specification
Language," Proceedings of the 35th Hawaii International Conference on System Sciences, 2002,
http://www.hicss.hawaii.edu/HICSS 35/HICSSpapers/PDFdocuments/STDSLOI .pdf.
[10] Brahnmath, G. J., Raje, R. R., Olson, A. M., Auguston, M., Bryant, B. R., Burt, C. C., A Quality of Service
Catalog for Software Components, Proceedings of the 2002 Southeastern Software Engineering Conference, pp.
513-520.
[11] Auguston, M., Tools for Program Dynamic Analysis, Testing, and Debugging Based on Event Grammars,
Proceedings of the 12th International Conference on Software Engineering and Knowledge Engineering, 2000, pp.
159-166.
[12] Hudson, M. J., The Web Services Placebo,. http://www.intelligententerprise.com/020917/515e businessl 1.shtml
[13] Czarnecki, K., Eisenecker, U.W., Generative Programming: Methods, Tools, and Applications, Addison-
Wesley, 2000.

SC 2004 Preliminary Version

* A Component Assembly Approach Based On
Aspect -Oriented Generative Domain Modeling

Fei Cao, Barrett R. Bryant, Carol C. Burt'

Department of Computer and Information Sciences

University of Alabama at Birmingham
Birmingham, AL, USA

Rajeev R. Raje, Andrew M. Olson 2

Department of Computer and Information Science
Indiana University Purdue University at Indianapolis

Indianapolis, IN, USA

Mikhail Auguston 3

Computer Science Department
Naval Postgraduate School

Monterey, CA, USA

Abstract

We present an approach towards automatic component assembly based on aspect-

oriented generative domain modeling. It involves the lifecycle covering the compo-
nent specification generation, and subsequent assembly of implementation compo-
nents to produce the final software system. Aspect-oriented techniques are applied
to capture the crosscutting concerns that emerge during the assembly process. Sub-

sequently, those concerns are woven to generate glue/wrapper code for assembling
heterogeneous components to construct a single integrated system.

Key words: Component Assembly, Generative Programming,
Generative Domain Model, Component Specification, Aspect
Orientation, UniFrame, Two-Level Grammar.

Email: {caof, bryant, cburt}@cis.uab.edu
2 Email: {rraje, aolson}Ocs.iupui.edu

3 Email: augustonoccs.nps.navy.mil
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www. elsevier.nl/locate/entcs

CAO

1 Introduction

As software component development technology becomes more mature, the
notion of developing software systems by assembling Commercial-Off-The-
Shelf (COTS) components (implemented in models such as COM 4 , DCOM 5 ,
EJB 6 . CCM 7) becomes not only theoretically rational, but also practically
sound. Component-Based Software Composition offers a development paradigm
with reduced time-to-market and cost while achieving enhanced productivity,
quality and maintainability [3].

But component assembly remains mainly either a handcrafting effort or
proprietary approach [28]. It is becoming an even harder problem when com-
ponents are delivered in binary form which may need binary code adaptation
[17], or when the underlying implementation language, deployment environ-
ment are heterogeneous. For the latter case, what's commonly seen is a mid-
dleware approach such as CORBA, that allows the components to work co-
operatively across language and platform boundaries. However, this approach
may also add extra complexity that makes the construction of a distributed
system more difficult [9].

UniMrame' is a framework for seamless interoperation of heterogeneous
distributed components. It aims to automate the process of integrating het-
erogeneous components to create distributed systems that conform to quality
requirements. By automatic generation of glue/wrapper code based on the
developer's functional and non-functional specification ([2], [26]), the system
generated will be tailored to specific requirements as opposed to being a mono-
lithic end product, and reliability is also enhanced. In this paper, we present
an approach to support the automatic component assembly in Uni~rame by
applying aspect-oriented generative domain modeling. In Section 2, we intro-
duce the background information of UniFrame. Section 3 and 4 present our
approach of using aspect-oriented generative domain modeling for component
assembly. Section 5 presents some discussion, followed by the description of
related work together with the conclusion in Section 6.

2 Background

2.1 Generative Programming

As is introduced in [10], Generative Programming (GP) is a software engineer-
ing paradigm based on modeling software families such that, given a particu-

" Component Object Model, http://www.microsoft.com/com
5 Distributed Component Object Model, http://www.microsoft.com/com/tech/dcom.asp
6 Enterprise Java Beans, http://java.sun.com/products/ejb
7 CORBA® (Common Object Request Broker Architecture, http://www.omg.org/corba)
Component Model, http://www.omg.org/cgi-bin/doc?orbos/99-07-01
8 Unified Framework for Seamless Integration of Heterogeneous Distributed Software Com-
ponents - http://www.cs.iupui.edu/uniFrame

2

CAO

lar requirement specification, a highly customized and optimized intermediate
or end-product can be automatically manufactured on demand from elemen-
tary, reusable implementation components by means of configuration knowl-

edge. The requirement specification is sometimes referred to as ordering of

products; the terminology used to specify family members is referred to as

the problem space; the implementation components with their possible con-

figurations form the solution space. The problem space and solution space,
together with the associated configuration knowledge, constitute the Genera-

tive Domain Model (GDM) [10]. The distinct property of GP is that it is not
only about a development for reuse in terms of building a GDM for software
system families, but also about a development with reuse in terms of using

GDM to generate concrete systems; it focuses on generation of system families
rather than a one-of-a-kind system.

2.2 UniFrame

With advances in network technology, software systems are shifting from a
closed, centralized architecture to being open and distributed; from being

homogeneous in implementation to adopting heterogeneous components for
constructing the whole system. To harness the omnipresent components in a
distributed system while having to address the inherent complexity of such a
paradigm, the functional and non-functional properties of components must
be formally captured, and there needs a means to assure the specified QoS
(Quality of Service)' for the system assembled from components. UniFrame is
a framework to address those concerns [26]. It uses a Unified Meta-component
Model (UMM) [25] to encode the meta-information of a component such
as functional properties, implementation technologies, and cooperative at-
tributes.

In Unitrame, a GDM is also used to capture the domain knowledge and
to elicit assembly rules. But the use of a GDM doesn't include the implemen-
tation components: this part is assumed to be offered in a distributed system

environment by different vendors observing the stipulated specifications in the
problem space of the GDM; those implementation components are exposed by
vendors and are subject to location by a distributed resource discovery service

[27]. In addition, the GDM in UniFrame is used to capture the assembly rules
for the discovered components.

Figure 1 illustrates the big picture of UniFrame. The annotated number
represents the processing order. Starting from domain experts, a GDM will

be created (1.1) and will be used together with some domain standards (1.2)
as guidelines (2.1, 2.2) for component developers to implement components
in solution space. Those implementation components, after being quantified
with some QoS parameters (3), will be exposed to a distributed resource dis-

9 In this paper, "non-functional aspect", "non-functional-property" and "Quality of Service
(QoS)" may be used interchangeably.

3

CAO

8 5,

Distributed Resource Component

Discovery Deployment Component
Quality Measures

7 1 odified Component_ Developer

Query 2.2 IA ~6 Query
• • •l•---Jl'• o"" Component Developer .

System Integrator Generative Domain Model

911 Standards

Yes 10 Deploy Domain Expert
Quality Validation (End) (Start)

Fig. 1. the Process of UniFrame.

covery service (5). Thereafter, a system integrator will query into the problem
space of the GDM for available/deployed component information (6), and then

command the resource discovery service (7) to fetch the required components
(5,8) for assembly. The component assembly is subject to validation (9) based
on specified QoS requirements. If it is not validated (11), then the integrator
has to initiate the query and integration process iteratively. As it can be seen

from above, the GDM stands as a crucial part of UniFrame, and how GDM is

represented so as to facilitate the component assembly is of vital importance.
We call the means to represent GDM generative domain modeling, which is
further detailed in the next section.

3 Overview of the Approach

3.1 Specification of Components in the Solution Space of the UniFrame GDM

Components in UniFrame are specified using the formalism of Two-Level
Grammar (TLG) [4]. The specification in TLG provides flexibility in trans-
lating TLG specifications to other representations, such as other formal spec-.
ification languages like the Vienna Development Method [21], or application

code [6]. TLG contains two context-free grammars, one describing type do-
mains and the other describing rules and operations on those domains. Note
it is not required to have both levels. Below is a template TLG specification.

4

CAO

class Identifier-i
Identifier-i, Identifier-ml :: DataTypel; DataType2;...,

DataType-nl.
Function-signature-l,...Function-signature-m2

function-call-l,function-call-2,..., function-call-n2.

end class Identifier-i.

The line containing "::" denotes the first-level type domain definition, for
which the right hand side of "::" provides the type (which is called a meta-type)
while the left hand side provides the variable name. Note the right hand side
may specify multiple types at the same time, which are delimited by ";". The
left hand side may also have multiple variables separated by ",", which are of
the same meta-type as defined on the right hand side. Also note the meta-type
may form a hierarchy (meta-type hierarchy). For example, BankOperation
may be the meta-type of the Withdraw operation, while Service may be the
meta-type of the BankOperation. Consequently, Service is also regarded as
the meta-type of Withdraw.

The line containing ":" denotes the definition of the second-level rule/operation
(also called hyper-rule) over the first-level type domains. ';' can be used in the
right hand side of ":" to delimit multiple rules which share the same function
signature on the left hand side. Note both first-level and second-level may
contain multiple (including zero) sentences as opposed to just one sentence of
each in the above description.

3.2 Separation of Concerns in Generative Domain Modeling

Consider the following two component specifications in the GDM problem
space (note this simple example serves for the motivation purpose only-full
definition of a component description language is provided in Section 4.2).

Component BankServer
provides AccountManagement:

applies AccessControl

end Component

Component BankClient
requires AccountManagement:

uses RMIServer applying QoSMonitor
end Component

In the BankServer specification, the provided service AccountManage-
ment uses AccessControl. But as business rules are subject to change, the
BankServer may lift the AccessControl or enforce other type of controls, either

5

CAO

Functional Business rule enforcement

* Specific technology instrumentation

Pre/post condition

Non-Functional Profiling

QoS Validation

QoS Instrumentation

Table 1
Assembly Related Aspects

of which will reduce the reusability of the original BankServer implementation
component. In the BankClient specification, the "RMIServer" and "QoSMon-
itor" that are required for a server-side AccountManagement service represent
the glue/wrapping logic needed to integrate the client and server components.
This tangles the BankClient component and also reduces its reusability as
glue/wrapping requirements change.

Aspect-Oriented Programming (AOP) [18] provides a means to capture
crosscutting aspects in a modular way with new language constructs, and also
provides a join point model to "hook" the aspects with the base program. This
is the basis of augmenting the component specification approach with aspect
orientation in order to separate those crosscutting assembly-related aspects of
components. Those aspects do not need to be implemented by vendors. The
separation will refine the granularity of GDM, and contribute to the maximal
combination, minimal redundancy, and maximum reuse, which are the desired
properties of implementation components [10] in the solution space of GDM.
Consequently, the component assembly process evolves into an aspect weaving
process. Table 1 provides the tentative catalog of assembly related concerns.

Figure 2 illustrates the aforementioned idea. The arrow ending with a
diamond figure represents the include relationship as in the standard UML 10

notation. Separation of concerns [23] is introduced into the domain analysis
phase, the output of which is the GDM. The GDM includes the concerns
identified at the domain analysis phase (which are also called early aspects 11),
and those aspects are collectively stored into a repository called the aspect
library. This aspect library corresponds to the configuration knowledge as
indicated in Section 2.1. The GDM also includes Component Description
Language (CDL, the actual definition to be provided in Section 4.2) in its
problem space part; the CDL is also used as a guideline for implementation

"Unified Modeling Language, http://www.omg.org/uml

11 http://early-aspects.net/

6

CAO

[Domain Analysis

CDL Aspect Library2Y

Compone rt Select/
'Reposito Referenc Weaved Specification

Glue/Wrapper cod

Fig. 2. Aspect-Oriented Generative Domain Modeling

of components by different vendors. Upon an ordering request over the GDM
problem space, the CDL in the problem space will be weaved with involved
assembly aspects into the specifications for glue/wrapper code generation,
which by referencing the implementation components, will be used to generate
final glue/wrapper code to connect the components.

4 Multi-Stage Component Assembly

Before we detail the component assembly process in Section 4.3, we provide
the related specification definitions in Section 4.1 and 4.2.

4.1 Definition and Use of Aspect

In such AOP languages as AspectJ [19], aspects are defined in a way that is
closely bound to the base program (the join point is specified syntactically
based on the base program). In contrast, in Figure 2, aspects are separately
stored as a library. Thus, a join point model is required to hook the aspects to
the targeted program so as to apply the related advice provided in the aspect.

Aspect Description Language (ADL)is defined as follows:

aspect <aspectname>
advises: <Meta-type>.

7

CAO

[before: <advice>.]
[after: <advice>.]

end aspect <aspectname>

The name enclosed in "<>" represents a grammar variable, which will be
exemplified in Section 4.3. The "[]" is used to delimit a part that is optional.
Those notations apply to the following Aspect Usage Language (AUL) and

CDL as well. The <Meta-type>, which is defined as in Section 3.1, is used
to specify the types of domain services that this aspect can be applied. The

advice following the directive before/after provides the pre/post actions to
be performed or pre/post conditions to be enforced before/after the domain
services, which can be used for temporal dependency specification and trac-
ing/QoS code instrumentation. For example, in [30], before/after advice is
used to specify rules for model checking. Consequently, the aspect library
represents a collection of assembly rules.

AUL is defined as follows:

apply <aspectname> on <type> [when <relational-expression>]

<aspectname> corresponds to an assembly-related aspect, which already pro-
vides a means to specify assembly rules as described in the preceding para-
graph. The <type> has to be consistent with the applicable <metatype> in
the ADL of <aspectname>. By consistent we mean the <metatype> as in the
ADL of <aspectname> should reside at the root position of some meta-type
hierarchy (see Section 3.1 for definition), where <type> is part of the hierar-
chy. The when directive in AUL further specifies the scenarios using relational
expressions, under which this aspect can be applied; in addition to the base-
program oriented weaving such as in AspectJ [18], the advice quantification
[12] here is also user-case oriented. It's quite straightforward that AUL can
be used in product ordering specification as indicated in Section 2.1. Note
the definitions of ADL and AUL are inspired by [11], where non-functional
aspects are separated from components themselves to increase the component
(and non-functional aspect) reuse, and the non-functional aspects are handled
with similar language constructs as ADL and AUL described here.

4.2 Component Description Language (CDL)

CDL is used in the problem space of GDM to specify the components, their
required and/or provided services in a way to achieve maximal combination,
minimal redundancy, and maximum reuse (as mentioned in Section 3.2) as
the result of aspect-oriented generative domain modeling. CDL is defined in
TLG as described in Section 3.1.

8

CAO

component <componentname>
<DomainVariablel>, . . <DomainVariable-m>

<DomainType-i>; <DomainType-2>;; <DomainType-n>.
[requires <Domain-Specific-Service>:

function-call-li, function-call-12,, function-call-in.]
[provides <Domain-Specif ic-Service>:

function-call-21, function-call- 22,, function-call-n.]
end component <componentname>

The first level of CDL provides the type-hierarchy of domain variables. The
requires/provides specification constitutes the second level. For the requires
specification, the right-hand side details the requirements; for the provides
specification, the right-hand specification further specifies the semantics of
the provided services.

4.3 Aspectual Component as a Paradigm of Component Assembly

The Aspect Library as shown in Figure 2 captures the general business and
technology requirements in terms of assembly-related concerns, and a single
AUL expression addresses a single concern. In contrast, a component captures
groups of behaviors and component assembly captures groups of concerns with
mixed scenarios. Aspectual Component is used here to address the group of
concerns occurring in the component assembly scenario.

The concept of aspectual component "2 is firstly proposed in [22], for which
aspects are decoupled from the base program by being defined as a generic as-
pectual component, which is instantiated later over a concrete data-model us-
ing a connector construct. Examples of aspectual components and connector
specifications will be provided in the following section. The concept of aspec-
tual component fosters the integration between AOSD (Aspect-Oriented Soft-
ware Development) and Component-Based Software Development (CBSD)
([8], [29]). The aspectual component model will also be used here for com-
ponent assembly. However, the original aspectual component is in Java, while
here it is a language-independent specification in TLG. The connector spec-
ification classifies server components' related services into a category based
on meta-type. The connector specification also includes related operations
associated with the meta-type. The meta-type can be regarded as one kind of
join point in AOP, while the related operations in the connector specification
provides advice. The meta-type in an aspectual component is the basis upon
which client and server component get hooked up; the join point model to be
used is again type-based as in Section 4.1.

We integrate the ideas into an process diagram in Section 4.3.1, which is
reified by an example in Section 4.3.2.

12 Note in our own context, the definition of aspectual component is subject to adjustment

* over its original definition in [22].

9

CAO

4.3.1 The Overall Picture
Figure 3 provides the multi-stage component assembly process. Stage 1 is
mainly about the introduction of the GDM (from domain analysis), which in-
cludes CDL in problem space and Aspect Library as configuration knowledge.
Stage 2 involves the weaving of the aspect specification into the component
specification for each component involved in the assembly process. Stage 3 il-
lustrates the process of the component assembly specification generation based
on the aspectual component model. This stage involves a connector repository,
where the connector specifications will be registered, and the aspectual com-
ponent will initiate a query into the connector repository to find the matching
connector specification based on meta-type consistency, and to apply the as-
sociated advice thereafter. The connector specification is translated from the
CDLs of the server component (service provider) and the aspectual component
specification is translated from the client component (service consumer). Af-
ter the full assembly specification is generated, by referencing the component
repository (which stores the set of component UMM specifications retrieved
by the discovery service in UniFrame), glue/wrapper code will be generated
in the final step.

4.3.2 An Example
To help clarify the aforementioned process, a simple example is provided be-
low, demonstrating how the aspectual component approach can be adapted to
the component assembly process. Assume that the component A is a banking
domain client component written in Java RMI requesting some banking ser-
vice from a server. Below is the partial specification of A's CDL:

A. 0 Component A
A.1 BankOperation:: Service.
A.2 Bank: :BusinessDomain.
A.3 Platform: :TechDomain.
A.4 requires BankOperation: Platform= CCRMIT.

A.5 end Component A.

Below is an ADL for a QoS measurement aspect stored in the Aspect Li-
brary and AUL to use that aspect.

aspect QoSMeter
advises: BankOperation.
before: EventTrace. setBeginTime ().
after: EventTrace. setEndTime).

end aspect QoSMeter

apply QoSMeter on A. BankOperation.

10

CAO

GDMI

Stage 1: gen ration of
GDM (from omain

Aspec -•[analysis)
AsL ID Lirr

U ID AULL 2

S~weave
weave -

Stage 2: weaving
aspects into component

r specification

0
Stage 3: gener ion of
component ass mbly
specification vi
aspectual-comr onent

Reoioy Select/ T weaving

,4 Reference [AsmlSpecificationIV

/71 Stage 4: generation of
Glue/Wrapper Code glue/wrapper cod

Fig. 3. Multi-Stage Gluing/Wrapping

The above specification of component A weaved with QoSMeter aspects
will be translated into the following aspectual component specification:

B. 0 AspectualCom A
B.1 Bankoperation:: Service.

B.2 Bank: :BusinessDomain.

B.3 expect Bankoperation.

11

CAO

B.4 expect wrap Argument. //usage interface
B.5 replace Bankoperation://modification interface

B.6 EventTrace.setBeginTimeo,
B.7 expected(), wrap(<<Platform=" RMI" >),

//each <<...>> corresponds to each
// expression in right hand side of ''''' of A4

B.8 EventTrace.setEndTimeo.
B. 9 end AspectualCom A

B.6 and B.8 are weaved from the QoSMeter aspect representing client-
side concerns. Note those lines prefixed by expect denote operation signatures
that are expected to be supplied with advice (which actually corresponds to
server-side services requested), and the expect-directive corresponds to the
join points in AOP. Expected operations are either used (usage interface)
or modified (modification interface, preceded with replace) in the aspectual
component definition. This process is similar to that described in [22].

Assume the component B is a banking domain server component imple-
mented in CORBA providing some banking services.

C. 0 Component B.
C.1 Withdraw, Deposit:: Port;Bankoperation.
C.2 Bank: :Domain.
C.3 Platform: :TechDomain

C.4 provides Bankoperation: Platform= C 'CORBA''.
C.5 end Component B.

Note in line C.1, the two types denoted in the right hand side of "::"

means both withdraw and deposit are not only Port(s) (which means they are
banking services offered to external components), but also Bankoperation(s).

Below is an ADL for an Access Control aspect [5] from the Aspect Library.

aspect AccessControl
advises: Service.
before: Log.Check().

end aspect AccessControl

This aspect can be applied to any Service (meta-type, thus applicable to
Withdraw). Consequently, before each call to Service, Log.Check() will be

called to verify the credentials.

The following specification will be translated from the component B spec-
ification with the AUL of the preceding aspect AccessControl.

D. 0 connector A-B
D. 1 {B.Withdraw, B.Deposit} is BankOperation. //join points

12

CAO

D.2 wrap(Argument):
D.3 apply AccessControl on B.WithDraw, B.Deposit,
D.4 apply RMIAspect on BankOperation when
D.5 Argument.getname ("'Platform'')==''RMI''
D. 6 end connector A-B

Note that lines D.2-D.5 further implement the advice part for the join
points (here, Withdraw and Deposit operations). The body of wrap is to wrap
the BankOperation with RMI specific code. This is similar to [24], in which
CORBA related operations are modularized as aspects and then woven into
application code to derive a CORBA implementation. The difference here is
that, those RMI or CORBA related aspects are pre-built and retrieved from
the aspect library, and they are represented with high-level specifications (in
ADL) rather than at the application code level. Upon weaving in Stage 4, the
wrap routine in the connector specification will be weaved into the aspectual
component specification.

The example illustrated in this section shows that assembly-related con-
cerns (functional and non-functional) of two components can be handled in
separate modules (here in the aspectual component definition and connector
specification) from the component specification itself. ADL and AUL provide
leverage for the assembly process itself to be easily specified and managed.
Consequently the assembly can be implemented by using a weaver to weave
assembly-specific advice together with component specifications.

5 Discussion

UniFrame, the motivating project of the component assembly approach pre-
sented here, aims at automating the process of integrating heterogeneous com-
ponents to create distributed systems that conform to quality requirements.
Generative Programming (GP) is the underpinning solution to fulfill this vi-
sion. In order to realize the vision of GP for the highest level of automation,
during the domain engineering phase, the creation of the domain model may
be applied using Model Integrating Computing (MIC) [20], which is a tech-
nology for using domain-specific modeling and a model based generator to
compose systems of various forms. MIC has been applied to create a Generic
Feature Modeling Environment (GFME) [7] to model system families and
generate reusable assets automatically. Based on the component assembly ap-
proach presented in this paper, Table 2 describes generative programming in
UniFrame.

Also note the assembly paradigm described in Section 4.3 follows a client/server
architecture, whereby the client component (service consumer) specification
is translated into the aspectual component specification. In the event the
components to be assembled are not following that kind of architecture, the
ordering specification itself may be translated into an aspectual component

13

CAO

Generative Programming UniFrame

0 Feature modeling GFME

Components are generated Components are imple-
in domain implementation mented by vendors. Gener-
phase ation only occurs at system

level

Configuration Knowledge Aspect Library

Mapping of problem space Resource Discovery Service
to solution space to search components based

on component specification

Domain Specific Language CDL, AUL, ADL
(DSL)

Generator Aspect Weaver

Table 2
Generative Programming in UniFrame

specification, and then the assembly process as shown in Figure 3 can be
applied.

6 Related Work and Conclusion

Recently, there has been work on the application of AOSD to CBSD. One
notable work is the aspectual component [22] as described in Section 4.3,
which provides a language approach to the effort of reusing aspects. The
aspectual component model is adjusted and used here for component assem-
bly. Grundy further introduces the notion of Aspect-Oriented Component
Engineering (AOCE) ([13], [14], [15], [16]). The aspects in AOCE have a
broad definition, which include user interfaces, collaborative work, distribu-
tion, persistency, memory management, transaction processing, security, data
management, component inter-relationships, and configuration characteris-
tics. AOCE, as an engineering approach, covers the lifecycle of component
engineering, from component requirements and specification, to implementa-
tion, deployment, and testing. In contrast to AOP, which highly relies on code
weaving, AOCE aims to use aspect-codified capacities to support component
provisions and requiring of aspect-related services in a general way. In this
sense, AOCE can be applied for building the aspect library. None of the re-
lated work ever considers applying AOSD to assist the component assembly,
however.

This paper presents an approach to apply aspect orientation in the gen-
erative domain modeling phase and then leverage the aspect weaver to help

14

CAO

component assembly, in particular, for assembling components of client/server
architecture. Two repositories (aspect library, connector repository) are used,
which aligns with the distributed component assembly style. A type-based
join point model is used which can efficiently decouple the aspect definition
and aspect usage to promote the reuse of aspects. Compared with the inva-
sive composition approach as described in [1], we weave the assembly-related
concerns toward ultimately generating stub/skeleton code for gluing/wrapping

components, while the original components (which represent the business logic
core), together with their references to stub/skeleton code, will not be affected.
This is necessary for black-box components which do not allow invasive meth-
ods.

Future work includes the evolution of the aspect library, the application
of MIC to domain engineering to automatically generate CDL, and the de-
velopment of the weaver to weave CDL and ADL. The implementation of
glue/wrapper code generation based on the generated assembly specification
using the UMM specifications of discovered components must also be inte-
grated into this process.

7 Acknowledgements

We'd like to acknowledge the anonymous reviewers for their helpful sugges-
tions. This research is supported by the U. S. Office of Naval Research under
the award number N00014-01-1-0746.

References

[1] ABmann, U., "Invasive Software Composition," Springer-Verlag, 2003.

[2] Brahnmath, G. J., Raje, R. R., Olson, A. M., Auguston, M., Bryant, B. R., Burt,
C. C., A Quality of Service Catalog for Software Components, Proceedings of
the Southeastern Software Engineering Conference ((SE) 2 2002), pp. 513-520,
April, 2002.

[3] Brown, A. W., "Large-Scale Component-Based Development," Prentice Hall,
2000.

[4] Bryant, B. R., Lee, B.-S., Two-Level Grammar as an Object-Oriented
Requirements Specification Language, Proceedings of 35th Hawaii International
Conference on System Sciences, 2002,
http:/ /www.hicss.hawaii.edu/HICSS-35/HICSSpapers/PDFdocuments/STDSL
01.pdf.

[5] Burt, C. C., Bryant, B. R., Raje, R. R., Olson, A. M., Auguston, M., Model
Driven Security: Unification of Authorization Models for Fine-Grain Access
Control, Proceedings of 7th IEEE International Enterprise Distributed Object5 Computing Conference (EDOC 2003), pp. 159-171, September, 2003.

15

CAO

[61 Cao, F., Bryant, B. R., Burt, C. C., Raje, R. R., Auguston, M, Olson, A. M.,
A Translation Approach to Component Specification, OOPSLA '02 Companion,
pp. 54-55, November, 2002.

[7] Cao, F., Bryant, B. R., Burt, C. C., Huang, Z., Raje, R. R., Olson, A. M.,
Auguston, M., Automating Feature-Oriented Domain Analysis, Proceedings of

2003 International Conference of Software Engineering Research and Practice

(SERP 2003), pp. 944-949, June, 2003.

[8] Choi, J. P., Aspect-Oriented Programming with Enterprise JavaBeans,
Proceedings of 4th IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2000), pp. 252-261, September, 2000.

[9] Colyer, A., Blair, G., Rashid, A., Managing Complexity in Middleware,
Proceedings of the 2nd AOSD Workshop on Aspects, Components, and Patterns
for Infrastructure Software (ACP4IS), March, 2003.

[10] Czarnecki, K., Eisenecker, U. W., "Generative Programming: Methods, Tools,

and Applications," Addison Wesley, 2000.

[11] Duclos, F., Estublier, J., Morat, P, Describing and Using Non Functional
Aspects in Component Based Applications, Proceedings of 1st International
Conference on Aspect-Oriented Software Development (AOSD 2002), pp. 65-75,
2002.

[12] Filman, G., Friedman, D., Aspect-Oriented Programming is Quantification and

Obliviousness, Proceedings of OOPSLA Workshop on Advanced Separation of
Concerns, pp. 168-177, October, 2000.

[13] Grundy, J. C., Multi-perspective Specification, Design and Implementation of

Components using Aspects, International Journal of Software Engineering and
Knowledge Engineering, 10(6):713-734, December 2000.

[14] Grundy, J. C., An Implementation Architecture for Aspect-oriented Component
Engineering, Proceedings of the 2000 International Conference on Parallel and
Distributed Processing Techniques and Applications, pp. 249-256, June, 2000.

[15] Grundy, J., Patel, R., Developing Software Components with the UML,
Enterprise Java Beans and Aspects, Proceedings of the 2001 Australian

Software Engineering Conference, pp. 127-136, August 2001.

[16] Grundy, J. C., Ding, G., Automatic Validation of Deployed J2EE Components

Using Aspects, Proceedings of the 17th IEEE International Conference on
Automated Software Engineering (ASE 2002), pp. 47-58, September 2002.

[17] Keller, R., H61zle, U., Binary Component Adaptation, Proceedings of European
Conference on Object-Oriented Programming (ECOOP'98), Springer-Verlag,
LNCS 1445, pp. 307-329, 1998.

[18] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier,
J.-M., Irwin, J., Aspect-Oriented Programming, Proceedings of European
Conference on Object-Oriented Programming (ECOOP'97), Springer-Verlag,

LNCS 1241, pp. 220-242, 1997.

16

CAO

[19] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W., An
Overview of AspectJ, Proceedings of European Conference on Object-Oriented
Programming (ECOOP'01), Springer-Verlag, LNCS 2072, pp.327-353, 2001.

[20] Lideczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J. and.
Karsai, G., Composing Domain-Specific Design Environments, IEEE Computer,
34(11):44-51, 2001.

[21] Lee, B.-S., Bryant. B. R., Automated Conversion from Requirements
Documentation to an Object-Oriented Formal Specification Language,
Proceedings of ACM Symposium on Applied Computing (SAC 2002), pp. 932-
936, 2002.

[22] Lieberherr, K., Lorenz, D., Mezini, M., Programming with Aspectual
Components, Technical Report, NU-CCS-99-01, 1999,
http://www.ccs.neu.edu/research/demeter/papers/aspectual-comps/aspectual
.ps.

[23] Parnas, D., On the Criteria To Be Used in Decomposing Systems into Modules,
Communications of the ACM, 15(12): 1053-1058, December 1972.

[24] Pulvermuller, E., Klaeren, H., Speck, A., Aspects in Distributed Environments,
Proceedings of Generative Component-based Software Engineering (GCSE 99),
Spinger-Verlag, LNCS 1799, pp. 37-48, September 1999.

[25] Raje, R., UMM: Unified Meta-object Model for Open Distributed Systems,
Proceedings of 4th IEEE International Conference of Algorithms and
Architecture for Parallel Processing (ICA3PP 2000), pp. 454-465, 2000.

[26] Raje, R. R., Auguston, M., Bryant, B. R., Olson, A. M., Burt, C. C., A Quality
of Service-Based Framework for Creating Distributed Heterogeneous Software
Components, Concurrency and Computation: Practice and Experience,
14(12):1009-1034, 2002.

[27] Siram, N. N., Raje, R. R., Auguston, M., Bryant, B. R., Olson, Burt, C. C., A.
M., An Architecture for the UniFrame Resource Discovery Service, Proceedings
of 3rd International Workshop on Software Engineering and Middleware (SEM
2002), Springer-Verlag, LNCS 2596, pp. 22-38, 2002.

[28] Sutherland, J., Heuvel, W.-J. v. d., Enterprise Application Integration and
Complex Adaptive Systems, Communications of the ACM, 45(10):59-64,
October, 2002.

[29] Suv6e, D., Vanderperren, W., and Jonckers, V., JAsCo: an Aspect-Oriented
approach tailored for Component-based Software Development, Proceedings. of
the 2nd International Conference on Aspect-Oriented Software Development
(AOSD 2003), pp. 21-29, March, 2003.

[30] Ubayashi, N., Tamai, T., Aspect-Oriented Programming with Model Checking,
Proceedings of the 1st International Conference on Aspect-Oriented Software
Development (AOSD 2002), pp. 148-154, April, 2002.

17

QoS-UniFrame: A Petri Net-based Modeling Approach to Assure QoS
Requirements of Distributed Real-time and Embedded Systems1

Shih-Hsi Liu Rajeev R. Raje Mikhail Auguston
Barrett R. Bryant Andrew M. Olson Naval Postgraduate School
Jeffrey G. Gray Indiana Univ. Purdue Monterey, CA 93934, USA

Univ. of Alabama at Birmingham Univ. Indianapolis maugusto@nps.navy.mil
Birmingham, AL 35294, USA Indianapolis, IN 46202, USA

{liush,bryant,gray} @cis.uab.edu {rraje,aolson} @cs.iupui.edu

Abstract ing a DRE system (e.g., an avionics system) is naturally

Assuring quality of service (QoS) requirements is crit- expensive and less modifiable. In order to decrease the pos-

ical when assembling a distributed real-time and embed- sibility of errors occuring after construction of a DRE sys-

ded (DRE) system from a repository of existing components. tem, validating a DRE system in advance is also necessary
This paper presents a two-level approach for assuring sat- to conserve the future potential costs. Therefore, it is neces-
isfaction of QoS requirements in the context of a reduced sary to have a formal, manageable, scalable and automatic
design space for DRE systems. A dynamic and parallel design space exploration approach to prune unsatisfactory
approach is introduced to prune off the infeasible design design spaces (i.e., unsatisfactory assembled cases), and to

spaces at thefirst level. Evolutionary algorithms cooperat- validate the rest of the assembled cases of a DRE system

ing with a domain-specific scripting language then discard from its requirements at system assembly time.

less probable design spaces using statistics. These tech- In addition to functional requirements, quality of service
niques fulfill the collective objectives ofpruning and assur- (QoS) that pertains to the usage of resources is an impor-
ing the design space at system assembly time. tant requirement of DRE systems. QoS parameters are used

to evaluate the degree of performance of QoS using util-
1. Introduction ity functions, which is the mathematical formulas that show

the utility of QoS. For example, timeliness is a quantifiable
Distributed real-time and embedded (DRE) systems are QoS parameter that estimates whether the deadline is met by

widely used in military, manufacturing, and control systems the addition of the execution time of involved components.
[17]. Many of these systems consist of legacy components. Security, however, is a non-quantifiable QoS parameter

From the perspective of software engineering, there is an tevuates hewevel of-eurifia DRE sys tem
urget dman tofulfll he eedof he dvelpmet, vo- that evaluates the level of security of a DRE system being

urgent demand to fulfill the need of the development, evo- achieved with a user-defined function. This paper presents

lution and integration of DRE systems from existing com- atw-evel assura ne tc nique cale pQoe-Unierames
ponets.Thi isin he isin o th Un~rae pojet [6]. a two-level assurance technique, called "QoS-UniFramne,"

ponents. This is in the vision of the UniFrame project [16]. for QoS of DRE systems assembled from components. This
During the synthesis of a DRE system, various appropriate technique, based on artificial intelligence and statistics, re-
components can be selected from a repository. However, duces the design space and validates QoS requirements at

numerous design and deployment decisions for the selected syte asselte Cnsequente believenthat
9 system assembly time. Consequently, we believe that dis-

components usually generate a tremendous number of pos- carding infeasible and less probable cases at system assem-
sible alteratives for constructing a DRE system. The de- bly time will require less runtime validation. In addition
sign information (i.e., specific design and deployment deci- to assurance and validation, QoS-UniFrame concentrates
sions and information of involved components) required for on observing and adapting non-orthogonal QoS parameters
synthesizing a DRE system is called a design space [13]. (e.g., CPU usage and throughput) seldom addressed by re-
Among the huge number of possible design spaces, many searchers. QoS-UniFrame also exploits AspectJ [8] to pro-
of them, in fact, do not satisfy the requirements of the DRE mote reusability and modularity by separating the source
system (i.e., constraint satisfaction). In addition, construct- code to analyze constraints from that to construct design

'This research was supported in part by U. S. Office of Naval Research spaces. The modification of the constraint analysis code is. award N00014-01-1-0746. convenient and isolated from the rest of the source code.

This paper is organized as follows: in the next section, A Petri Net is a formalism similar to dataflow analysis,
background and related work are addressed; section 3 in- but has additional abstractions beneficial in modeling con-
troduces the framework and techniques of QoS-UniFrame; current and asynchronous systems [14]. It is expressed by
section 4 provides a case study; finally, we conclude and a Petri Net graph, which is a visual representation that can
point out the future work of the paper in section 5. model a DRE system. A Petri Net graph consists of abstrac-

tions adequate to analyze QoS requirements of possible as-
2. Background and Related Work sembled cases of a DRE system. Tokens represent QoS pa-

rameters with the identifiers, and the types and ranges of the
2.1 Background of QoS-UniFrame parameters. Places, (sets of) components in a DRE system,

are the same as the starting and end points of a segment of a
The implementation of QoS-UniFrame is based on two dataflow in the dataflow analysis. Flows, same as dataflows,

control the flowing direction of the QoS parameters. Transi-

2.1.1 Petri Nets tions embody associated predicates and functions for time,
priorities and event triggers to determine what, when and

System engineers need to make various decisions while how QoS parameters are to be processed [14]: only when
constructing a DRE system. Different decisions may re- specific conditions are satisfied can the QoS parameter be
quire cooperation with different components. For one deci- prcsebydcnetco oet.

sion, there may be diverse execution orders, execution time,

and events to trigger execution among the chosen compo- co C1 C2 C3 111o0oD

nents. Therefore, there are a huge number of possible as- * *
sembled cases generated based on different decisions and
components with the consideration of various orders, time, 1 Q

and events. QoS-UniFrame reduces the complexity of ex- 10010110 2 00111000

ploring all possible assembled cases for building a DRE sys- ooooi001 1
tem by evaluating their QoS requirements. The evaluation C4 Cs C6 C7 0

of QoS of a specific assembled case depends on when, what, (a) PetriNet Graph (b) Reachability Tree

and how the components request QoS requirements. When
expresses the specific time or before/after a specific event Figure 1. The Petri Net graph and its rea.ha-
a component has effect on a QoS parameter; what speci-
fies which QoS parameter is inspected; how represents the To explore various possible assembled cases, the reacha-
relationship of data access among the components. bility tree is exploited to diagnose a Petri Net graph. Figure

In most QoS research (e.g., [13]), dataflow analysis is 1 (a) is a simple Petri Net that shows the formalism to model
applied to explore possible solutions for assurance of QoS a DRE system with various design decisions and time and
requirements. A segment of a dataflow is a directed arrow event concerns described below. Assume that eight com-
between two (sets of) components generated by a single de- ponents (CO to C7) constitute a simple DRE system. Both
cision. The directed arrow means that two (sets of) compo- C1 and C2 have two decisions such that CI can either work
nents have requests to access a QoS parameter from one to with CO or C2, and C2 can cooperate with CI or C3. A
another, or have effect on a QoS parameter by cooperation QoS parameter (black token) that processes C1 and C2 will
between each other. For multiple decisions after a specific be accessed by both C5 and C6. C4, C5 and C6, and C7
segment of a dataflow, multiple segments will be generated can deal with the QoS parameter at time t], t2 and t3, re-
and flow to corresponding (sets of) components. Finally, spectively. CI and C2 with two flows means the token will
various dataflows (also called QoS systemic paths), and the stream to one of two transitions without preference (i.e., al-
sequences of the segments of dataflows, will be generated ternative decisions). Finally, transition B and C verify if
as a tree structure by different decisions. Namely, the leaves C2 has an event (gray token) execution that triggers C5 and
of the tree are all possible assembled cases created based on C6 to access the QoS parameter. For B, three conditions
different decisions. However, the dataflow analysis is not cause the black token stream to C5 and C6: the black to-
sufficient for analyzing DRE systems, because some QoS kens in CI and C2 are both flowing in; the gray token in
analyses require additional information. For example, in C2 is flowing in, and is verified by B; and timer is at time
some DRE systems, the performance of the systems relies t2. Consequently, one assembled case is made, and branch
on the levels of QoS to be achieved. Different levels of 1 of Figure 1 (b) is constructed correspondingly. Figure 1
QoS will trigger corresponding events, and vice versa. Fur- (b) is the reachability tree of Figure 1 (a) generated by the
thermore, time and priority constraints also influence QoS. construction principles stated above. The purpose of a Petri
All of these characteristics show the difficulty for dataflow Net is to explore and generate possible assembled cases byS analysis to assure QoS requirements of DRE systems. its reachability tree based on the design decisions, selected

components considering priorities, events, and time. There has been considerable research to validate
There are several advantages to modeling DRE systems scheduling requirements of DRE systems. In [3], the timing

using Petri Nets. First, as stated before, Petri Nets' abstrac- constraint is validated by a symbolic model checking ap-
tions and characteristics are appropriate to simulate DRE proach. Symbolic model checking is an extension of model
systems, either for functional or nonfunctional require- checking such that analysis is based on symbolic transition
ments. They overcome the insufficiency of the dataflow representation and propositional logic with the extension of
analysis. In addition, the transitions regarding priority, time, time operators. In [4] and [6], specialized Petri Nets were
and events infer the concept of dynamic decision making applied to verify time behaviors of DRE systems. All assur-
such that only when a specific transition is persuaded can ance by either model checking or Petri Nets has an inherent
an assembled case by the decision be generated. problem that validation does not always guarantee that the

2.1.2 AspectJ actual synthesized DRE systems are perfectly satisfactory:

Aspect] [8] is an aspect-oriented programming (AOP) lan- unpredictable behaviors that sometimes occur in DRE sys-AspetJ 8] i anaspct-oiened pogrmmig (AP) an- tems degrade the confidence of validation. Therefore, sup-

guage [9] for Java. It provides a modular mechanism to te statist ca r ference utilidabio n ifre will

avoid the error-prone, fragile and tedious modification work

for constraint analysis. An aspect recognizes the points of be valuable as unpredictable behaviors occur.

the method crosscutting Java's classes using pointcuts, and 3 QoS-UniFrame
then defines how the modification should be made using ad-
vice. The aspect code is weaved into the Java base code Before the details of QoS-UniFrame are addressed, a
with good modularity such that any change of the modifi- brief example is given to illustrate why and how QoS-
cation is isolated in the aspect. Hence, AspectJ promotes UniFrame solves the design space exploration problem with
a better means to modularize and reuse the source code. the constraint satisfaction:
QoS-UniFrame exploits AspectJ to recognize the methods
of the reachability tree construction, and insert the con- A water treatment plr e s dnerstraint analysis method code. ment units (TUs) to two new water treatment pools. Under

the limit of the budget, the system and deployment engineers
2.2 Related Work would like to ascertain the best performance of collective

S An Ordered Binary Decision Diagram (OBDD) [2] ap- TUs from the blueprint. During the system design stage,

U plies symbolic representations (i.e., binary encodings) to different design and deployment decisions are made such as

prune off the unsatisfactory design spaces [13]. It encodes the order and the priority of the TUs, and the locations of

mode space (i.e., functional behaviors that QoS-UniFrame the specialized TUs. In addition, the deployment of the TUs

does not cover), configuration space (i.e., dataflow), and has various restrictions such as the bandwidth and the sig-

constraints into binary representations. Binary operations nal strength of the wireless network, the life of a battery in

are used to compute the fulfillment of constraints. How- each TU, and the processing speed of the CPU in each TU

ever, the OBDD method suffers from the following disad- Numerous decisions and constraints require concentra-
vantages. First, binary operations for addition and multi- tions in this project, and many of them have mutual effects.
plication are rigid and not user-friendly. It is not easy for Hence, a manual procedure to construct and manage this
system analysts to adjust the evaluation of pruning design project is error-prone and tedious. QoS-UniFrame answers
spaces adaptively. In addition, this binary method requires these requests to ease the workload of the design decisions
sufficient temporary variables for computation. Second, with constraints of the project. Starting from functional and
many of the QoS parameters are non-orthogonal such that nonfunctional requirements, a use case scenario is analyzed
adjustment of one QoS parameter may substantially affect to determine the static and dynamic QoS requirements. Sys-
other QoS parameters. It is hard to specify a composite non- tem engineers construct a visual Petri Net model according
orthogonal constraint by means of conjunction and disjunc- to their design and deployment decisions. The system engi-
tion. A quantitative expression (e.g., a linear or nonlinear neers depict the mutual behaviors of each component based
function) would be a better alternative. Third, the OBDD on their QoS parameters in the Petri Net model. System an-
representation is not mature enough to solve system-level alysts write the AspectJ codes with respect to the evaluation
constraint problems and "the scalability of the method be- of strict or orthogonal static constraints (defined later), such
comes susceptible and results in an exponential blow-up in as the total capacity of the batteries of TUs. These aspects
OBDD representation" [13]. Most importantly, OBDD is a are weaved into a dynamic and parallel approach to gen-
static design space pruning approach such that the computa- erate a tree abstraction including all feasible cases. Back-
tion can be processed when a dataflow with corresponding tracking and branch-and-bound algorithms are employed to
constraints is entirely constructed. All of these disadvan- prune off infeasible assembled cases based on strict or or-. tages motivate the development of QoS-UniFrame. thogonal static QoS requirements at the first level. System

analysts then write a domain-specific scripting code of evo- lines) allow margins of error when meeting QoS require-. lutionary algorithms. The source code takes non-orthogonal ments. The performance of the system will be degraded ac-
or non-strict static, and dynamic QoS (defined later) into ac- cording to the magnitude that non-strict QoS requirements
count with specific mathematical functions. The evolution- are not assured. Orthogonal QoS implies that its adaptation
ary algorithms will generate statistical results automatically. will not influence other QoS, yet non-orthogonal QoS sub-
The less probable cases will be eliminated according to the stantially affects other QoS directly or indirectly. According
discarding policies written in the domain-specific scripting to the hierarchy of classification, QoS-UniFrame separates
code. The survival cases will be stored back to the knowl- static and dynamic QoS into a two-level assurance process.
edge base with their statistical information. Figure 2 shows
the framework of QoS-UniFrame. 3.2 Petri Net-based QoS Modeling

In order to explore design spaces efficiently and assure
QoS requirements manageably, a formal approach to model

Functional and Nonfunctional Specification and analyze the components of a DRE system with respect

to its QoS is necessary: a Petri Net-based QoS modeling

Static DOS Static Gos Component language has been created in the Generic Modeling Envi-
A Use. cse (tit and (non-strict and Dynamic Repository

Otool on-ortogonal)ronment (GME) [10].0 na) I .- Ohogoal)Knowledge
SBase of

W_ Mpublic aspect Analysis
pointort MonitoriQosPar par)

call(public void *.createNode(..)) && aýrga(par);
Petr NetPN TeeaftariQosPar parlt Monitoriparli

Metaode Contrutordouble temp=0;
if (parl.getName() .equals(*MPC)))

//MPC stands for 'Maximum Flow Processing Capacity*
Ca Interpreter Ctemp=parl.getValuei);

//evaluate MPC's QoS requirement

after(QosPar par2l) : Monitor(par2)

Strict double temp=0;
Backtracking Static Al.otthmawlhf if (par2.getNamei).equalsisBL)i I

and~ranCf oS PPCEA //BL stands for "Battery Life"

temp-parl .getValueo;
mits I//evaluate BL's QoS requirement

Discard. Strict Statistical Statistical)
Static QoS Results of Results of

Requirements Do Non-strict Dynamic OoS of
Not Meet Statlc DoS of Design Spc Figure 3. Constraint analysis method code for

Design Spaces
QoS parameters written in AspectJ.

Figure 2. The framework of QoS-UniFrame. As stated before, a Petri Net can explore and produce de-

3.1 Classification of QoS Parameters sign spaces using the reachability tree. QoS-UniFrame eval-
uates strict or orthogonal static QoS requirements as a child

QoS-UniFrame currently concentrates on those QoS re- node of a reachability tree is generated, and remove infeasi-
quirements that can be quantified. Namely, non-quantifiable ble child nodes. Thus, strict or orthogonal static constraint
QoS requirements (e.g., security and reliability) are out of analysis methods crosscut the source code of the child node
our scope. QoS-UniFrame further classifies quantifiable construction of the reachability tree. The source code that
QoS requirements into static and dynamic. Static QoS is analyzes constraints is written in AspectJ [8] as shown in
design-related, and dynamic QoS is substantially influenced Figure 3, and is weaved into the source code of the child
by the deployment environment. Many of the static QoS re- node construction. In Figure 3, pointcut "Monitor" recog-
quirements can be evaluated at component assembly time, nizes the method that generates a child node of the reach-
yet dynamic QoS requirements need either simulators or ability tree. The first after advice statement evaluates the
virtual machines to monitor, predict, and adapt the QoS con- maximum flow processing capacity (MPG). It shows that
cerns. However, several dynamic QoS requirements can be after the "createNode" method is called, the QoS parameter
assessed by referring to a component's previous state and is accessed, and then is evaluated by bounding and criterion
observations, as stored in a knowledge base at assembly functions (defined later). The second after advice statement
time. Static and dynamic QoS parameters may be further evaluates the battery life (BL) using different bounding and
subclassified into strict and non-strict, and orthogonal and criterion functions after the "createNode" method is called.
non-orthogonal QoS. Strict QoS requirements (e.g., hard Implementing Petri Nets with GME and AspectJ con-
deadlines) force DRE systems to meet the requirements. tributes several merits. Because GME is a metaconfigurable
Otherwise, the system will be incorrect because it cannot modeling tool that permits customization [10], Petri Net. meet its QoS. Non-strict QoS requirements (e.g., soft dead- models (i.e., simulation of DRE systems) can extend new

features easily. Clear and appropriate syntactical and se- spaces are eliminated simultaneously.
mantic design constraints supported in GME moderate the 3.4 Evolutionary Algorithms
possibility of the errors occuring at the design phase. The
visual modeling environment of GME also provides a user In the DRE domain, it is tedious and time-consuming
friendly and easily manageable environment for system en- to validate one QoS requirement at a time. The B/B al-
gineers. In addition, separation of concerns of construction gorithm processes various strict and orthogonal static QoS
of QoS systemic paths and constraint analysis methods pro- parameters simultaneously writing different advice in an as-
motes reusability and modularity of source code. Various pect. For non-strict or non-orthogonal static QoS require-
orthogonal QoS parameters can be evaluated concurrently ments, and dynamic QoS requirements, QoS-UniFrame uti-
by writing different advice in the analysis aspect (Figure 3). lizes evolutionary algorithms (EAs) [12] as the second level
In this context, concurrency means that all of the constraint assurance. An EA is a search and optimization technique
analysis codes are embedded in a child node construction based on the principles of natural selection and survival of
method; namely, all advice crosscuts the same pointcut. the fittest [12]. The decision of the fittest (i.e., maximum,
Thus, it is necessary to define the advice precedence (i.e., minimum or average) comes from the results of linear or
weaving order of the advice) to avoid conflicts, nonlinear fitness functions in EAs. The fitness functions

solve the tedious and time-consuming problem of non-strict
3.3 Backtracking and Branch-and-bound static QoS, and the side effect problem of non-orthogonal

(static and dynamic) QoS by combining all of the associatedIn order to decrease the design spaces dynamically, the QoS requirements into a mathematical formula. Because

reachability tree construction code arid its analysis aspect dynamic QoS requirements need to comply with the deploy-

(Figure 3) are embedded into backtracking or branch-and- men environm ent, ni e poc esses static de dy-

bound (B/B) algorithms [7]. The B/B algorithm that QoS- namic QoS requirements in separate steps. QoS-UniFrame

UniFrame exploits is the first level assurance to evaluate sta- has d opeduardman-spi f s cripting la ngu ag e
ticQoSparmetrs hatarestrct nd rthgonl, s i [31. has developed a domain-specific scripting language, calledtic QoS parameters that are strict and orthogonal, as in [13]. PPCEA [11], to make EAs expeditious and adaptable. PPCEA

The backtracking algorithm employs a depth-first search on and tJ exp edassur anc ofaQoSbreq by

the reachability tree structure with bounding and criterion anspof liear or arsfunction Ths reprementa-

functions. Bounding functions are the constraints of strict mions m e thea ssurane pr oss es e se thans the

and orthogonal static QoS requirements, and criterion func- OBDD approach at system assembly time.

tions (i.e., QoS utility functions) are used to determine the

optimal solutions of a QoS systemic path, either maximal or 3.4.1 Static QoS Requirements
minimal. The backtracking algorithm constructs the reach- The B/B algorithm is, in fact, able to evaluate non-
ability tree from the root by depth-first search. It evaluates strict/non-orthogonal static QoS requirements by AspectJ.
the bounding and criterion functions at every intermediate However, the unique purpose of the B/B algorithm is to re-
node. If the criterion applied to certain nodes does not meet move infeasible design spaces with the dynamic and paral-
the bounding function, the backtracking algorithm will stop lel concept. Hence; we postpone computing non-strict/non-
generating all descendant nodes. Alternatively, the branch- orthogonal static QoS until the second level assurance. An
and-bound algorithm operates with the reachability tree us- EA evaluates the best results of non-strict/non-orthogonal
ing various search algorithms. LC-search [7] is an improved static QoS parameters by a user-defined fitness function.
search algorithm with a ranking function QoS-UniFrame For example, a DRE system constructed by a set of PDAs
chooses to implement. Similarly, the branch-and-bound al- that meets battery maximum capacity may estimate the op-
gorithm traces from the root of a reachability tree. The rank- timal solution of the lifetime, the disposal fee, and the pur-
ing function determines the next node (i.e., live node) to chase cost of the batteries by a fitness function. Therefore,
be evaluated. LC-search intelligently ranks the live nodes a user-defined fitness function can satisfy this demand.
to avoid the fixed order searches. Bounding and criterion
functions in the backtracking algorithm play the same roles 3.4.2 Dynamic QoS Requirements
to stop constructing unsatisfactory child nodes. Therefore, Evaluating dynamic QoS requires the cooperation of the de-
the B/B algorithm dynamically eliminates the unsatisfactory ployment environment. However, the statistical results of
design spaces based on strict and orthogonal static QoS re- dynamic QoS by EAs at component assembly time may
quirements. Unlike most pruning design space approaches, serve as excellent estimates and as substitutions as unpre-
such as [13], that evaluate one design space at a time, the dictable behaviors occur later at runtime. EA solves the
B/B algorithm introduces a "parallel pruning concept" that best, worst, and average fitness values and their standard
cuts infeasible descendant leaves concurrently; namely, all deviations of a user-defined fitness function. Dynamic QoS
the child nodes of an unsatisfactory intermediate node are requirement validation, such as deadlines for real-time sys-. discarded at the same time, which means infeasible design tems, uses the previous state information of a component in

the knowledge base to obtain the statistical results. Some Figure 4, if the average of ten worst cases is greater than. assembled cases of these statistical results can be the refer- 1.1 (i.e., user-defined discard rate) times the strict dynamic
ences of runtime validation evaluation, and others may be QoS requirement, the test case can be rejected.
eliminated by discarding policies invented based on PPCEA.
User-defined discarding policies determine how and which 4 A DRE System Case Study
assembled cases are rejected. More details will be explained This section presents a Petri Net-based QoS model of an
in the next subsection. example DRE system representing the water treatment plant
3.4.3 PPCEA described in section 3. The system engineers would like to

To obtain the statistical outputs from EAs efficiently and to examine the best performance of the water treatment ability

discard less probable assembled cases flexibly, a domain- under certain constraints:

specific scripting language, Programmable Parameter Con- (a) Due to the budget constraint, only three and two treat-
trol for Evolutionary Algorithms (PPCEA) [11], has been ment units can be chosen for pools one and two for the
developed. PPCEA keeps the evolution process simple and water treatment process, respectively.
raises the control parameter settings up to a high abstrac- (b) the total maximum flow processing capacity is at least
tion level in a programming fashion. In PPCEA, a configu- 50 million gallons per day.
ration mechanism is provided to embed the parameters of (c) the battery life of each TU has at least 15 hours left.
EAs (e.g., crossover, mutation and discard rate, and popu- (d) total CPU usage is at most 70 percent.
lation size) and its fitness function into the computation of
EAs. The modification of these parameters is by a program- (e) total water treatment volume of selected TUs is at least
ming fashion, i.e., assignment statement. This mechanism 35 million gallons per day.
provides the flexibility for users to find the optimal solution (f) Pipeline A must pump water into Pool Two at time Y;
by different kinds of parameter settings [11]. Pipeline B and C must pump water into Tower X andY

at time t2, respectively.

genetic
Discard := 1.1; //discard rate by parameter tuning Table 1. The values of QoS parameters of the
while (t <= 10) do water treatment plant exampleinit ; //initialize population

callEA;//evaluate fitness value for a population
Temp :=Temp + Worst;//Temp is temporary variable
t t I TU MPC BL CPU usage WTVand;

TeTp eTmp / t; Cll 10 20 (20,23) (5,8)
if (Temp > QoS*Discard)

//Avg of Worst value far from requirement C12 15 14 (10,12) (10,12)
delete-gene //delete test cases not satisfiedf i; C13 13 17 (15,18) (10,12)

end genetic C14 15 22 (5,7) (8,10)

Figure 4. Parameter tuning discarding policy C21 16 28 (10,15) (5,9)

written in PPCEA. C22 18 33 (15,18) (4,7)
C23 20 20 (20,22) (7,10)

After defining the fitness function and parameters,

PPCEA decides which genotypes (i.e., assembled cases) Constraint (a) is a restriction of the design decision. Con-
should be deleted from the population by the discarding straints (b) and (c) are the strict and orthogonal static QoS
policies with their discard rates. Users can apply parameter parameters. Constraints (d) and (e) are the dynamic QoS
tuning, deterministic, or adaptive [5] discarding policies to parameters. Constraint (f) is the time constraint. Table I
the discard rate. Parameter tuning determines the value of includes all of the values of the QoS parameters requested
the discard rate by assigning a constant value before each from the knowledge base. Column 1 shows the identity of
EA run. The deterministic method assigns the discard rate each treatment unit (TU), column 2 contains the maximum
before the evaluation by a deterministic rule based on linear flow processing capacity (MPC) of each TU (million gal-
algebra [11]. Finally, the adaptive method adjusts the dis- Ions/day), column 3 shows the current battery life (BL) of
card rate during the run of evaluation [11]. Figure 4 shows each unit (voltage), column 4 is the CPU usage of each TU
the example of parameter tuning discarding policy that op- (%), and the last column contains the water treatment vol-
erates with the discard rate. "t" is the counter for the while ume (WTV) of each TU (million gallons/day). Figure 5
loop; "Discard" is the discard rate for discarding policy; shows the Petri Net model of the project under constraints
"QoS" is a dynamic QoS requirement; "Worst" is the worst (a) and (f). The bars (i.e., transitions) at the same level of
fitness value; "Temp" is the temporary variable for the con- tO, t] and t2 horizontally have the mechanism of the timing
venience of computation; "callEA" evaluates the values of control.
fitness function of each genotype; and "delete-gene" dis- QoS-UniFrame generates a reachability tree of the. cards those genotypes that do not meet the requirements. In project based on strict and orthogonal static QoS. During

Time is defined in section 3.4.3. "Maxgen" is the maximum
Water pumped Line

fromthe River number of generations (100) an EA can run. "Popsize"
to- is the size of a population (value 100), "Pxover" is the

"Choose 3 crossover rate (0.5), and "Pmutation" is the mutation rate
Components from Ctt Ct2 Cr3 Ct4

4 Choices in Pool (0.7) [12]. Please note that, for brevity, only one parame-
One ter setting is represented in the paper. To obtain the best

statistical results, a fitness function can be evaluated with
4 Design Ophons various parameter settings in a programmable fashion dur-

Go through A A A A parameter in fashiontainr
Pipeline A ing the execution Of PPCEA code [11]. Table 2 contains

the average results of each case after ten iterations at the
SCh.oose 2, second level. Case I represents {C1 1,C13,C14,C21,C22},

Components from
3 Choices in Pool' C21 C22 C23 case 2 expresses JCl1,C13,C14,C21,C23}, and case 3

Two is {Cll,C13,C14,C22,C23}. "NO" stands for the non-
t2 orthogonal fitness function described below. Table 2 shows

Clean Water goes that {C1 l,C13,C14,C22,C23}'s average of ten worst cases
Tower Y is bigger than 1.1 times the constraint (d). Therefore, QoS-

UniFrame tends to discard this design space. Case 3 does
not meet the discarding policy, so QoS-UniFrame keeps its

Figure 5. The example of the Petri Net model information for future use. Because CPU usage and water
representing the water treatment plant. treatment volume are non-orthogonal dynamic QoS para-

Table 2. The experimental results of the water meters, we defined a fitness function to address the mutual

treatment plant project effect of CPU usage and water treatment volume. The fit-
ness function is defined as below:

Case 1 Case 2 Case 3 f(x) = (CPU Usage)/(Water Treatment Volume)
CPU Average j69.8223 73.9332 77.4793 This function is treated as the statistical references for

CPU Worst 64.1087 75.0327 78.4904 future investigation instead of a constraint. Finally,
WTVAverage 40.7911 43.25 4 2.1 {Cll,C13,C14,C21,C23} and {Cll,C13,C14,C21,C22}

WTV Worst 36.2826 39.4127 37.1191 are two survival cases statistically based on Figure 4.
NO Best 11.8349 10.4933 11.215

NO Average 11.3491 10.1158 10.6731 [The
NO Worst 9.483 8.4471 8.9652

the first level assurance, two after advice statements from

Figure 3 are written and weaved into the source code of ."<

the tree construction. The first advice examines the sat- .- "
isfaction of the constraint (b), and the second advice as- Case 3 t

sures the constraint (c). From the experimental result, QoS- C.- I C.. . PPCEA bond0,

UniFrame shows that C 12 does not meet the constraint (c).

Thus, only Cll, C13, C14, C21, C22 and C23 will be Figure 6. The Petri Net reachability tree of the
chosen for pool one and pool two. At this stage, three water treatment plant example.
assembled cases have survived: {C11,C13,C14,C21,C22},
{C1l,C13,C14,C21,C23}, and {Cl1,C13,C14,C22,C23}. These experimental results show that QoS-UniFrame
Subsequently, the CPU usage and water treatment volume outperforms the OBDD approach [13] in the example of
(WTV) require the previous states and observations stored the water treatment plant project. At the first level, QoS-
in the knowledge base. Table 1 contains the boundaries UniFrame cuts off 3 intermediate nodes, as shown in Figure
of the dynamic QoS requirements. At the second level, 6. Each of these intermediate nodes have three more child
the parameter tuning approach written in PPCEA code is nodes. Therefore, 9 more design spaces are eliminated be-
involved (Figure 4). First, two dynamic QoS constraints fore the end of reachability tree construction. The OBDD
are examined independently by using addition. The prede- method, however, requires generating all 12 cases which
fined discard rate is 1.1, which means if the worst case is is less efficient than QoS-UniFrame. In addition, by using
greater than 1.1 times this strict dynamic QoS requirement, the discarding policy at the second level, PPCEA statistically
the evaluated case is deleted. All of the predefined values discards one more case. Therefore, QoS-UniFrame has bet-
of parameters needed for EAs are in Table 2. "Discard" ter performance than the OBDD approach for this specific

example.

5 Conclusion and the Future Work [5] A. E. Eiben, R. Hintering, and Z. Michalewicz. Para-
* The earlier that an error is detected in the software life- meter control in evolutionary algorithms. IEEE Trans.

cycle, the less costly it is to fix [1]. QoS-UniFrame obeys on Evolutionary Computation, 3(2):124-141, 1999.
this golden rule to reduce the design space at system assem- [6] Z. Gu and K. G. Shin. An integrated approach to
bly time. At the first level, the dynamic and parallel pruning modeling and analysis of embedded real-time systems
approach is applied to expedite the pruning process. Only based on timed petri nets. In Proc. 2 3 rd Intl. Conf
the feasible QoS systemic paths are generated by back-
tracking or branch-and-bound algorithms. At the second on Distributed Computing Systems (ICDCS'03), pages

level, a fine-grained statistical approach is employed to fur- 350-359,2003.

ther eliminate less probable QoS systemic paths. PPCEA [7] E. Horowitz, S. Sahni, and S. Rajasekaran. Computer
also provides auxiliary statistical results as the reference Algorithms. Computer Science Press, 1998.
at runtime. In addition, constructing Petri Net-based QoS
modeling in the GME in collaboration with AspectJ facili- [8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
tates customization, extensibility, flexibility, modularity and J. Palm, and W. G. Griswold. Getting started with As-
reusability. In conclusion, QoS-UniFrame provides a for- pectJ. Commun. of the ACM, 44(10):59-65, 2001.
mal, manageable, scalable and semi-automatic approach to [9] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
prune off unsatisfactory design spaces, and to validate a C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
DRE system from its requirements at system assembly time. oriented programming. In Proc. European Conf. on
The design complexity of building DRE systems complying Object-Oriented Programming (ECOOP'97), LNCS
with numerous decisions, ordered components, events, and
time can be further reduced than the OBDD method. For
more details regarding QoS-UniFrame, please refer to [15]. [10] A. Lrdeczi, A. Bakay, M. Mar6ti, P. Volgyesi,

QoS-UniFrame introduces a mathematical method (i.e., G. Nordstrom, J. Sprinkle, and G. Karsai. Compos-
a fitness function) to solve the non-orthogonal QoS side ing domain-specific design environments. Computer,
effect problem. However, this approach is still not corn- 34(11):44-51, November 2001.
prehensive and further research is necessary. For exam-
ple, the priorities of the non-orthogonal QoS and the de- [11] S.-H. Liu, M. Merik, and B. R. Bryant. Parameter

* gree of the affectations among these QoS must be defined, control in evolutionary algorithms by domain-specific
Finally, QoS-UniFrame is a semi-automatic toolkit to ex- scripting language PPCEA. In Proc. Intl. Conf Bioin-
plore, decrease and then assure the design spaces with con- spired Optimization Methods and Their Applications
straints. System analysts would be required to have the ba- (BIOMA'04), pages 41-50, 2004.
sic knowledge of programming skills in AspectJ and PPCEA. [12] Z. Michalewicz. Genetic Algorithms + Data Struc-
A comprehensive automatic toolkit of design space explo- tures = Evolution Programs. Springer-Verlag, 1996.
ration and assurance that eases system analysts and system
engineers' workload is also the future direction of QoS- [13] S. Neema, J. Sztipanovits, G. Karsai, and K. Butts.
UniFrame. Constraint-based design space exploration and model

References synthesis. In Proc. 3 rd Intl. Conf Embedded Software
(EMSOFT'03), Springer-Verlag LNCS, volume 2855,

[1] B. W. Boehm. Software Engineering Economics. pages 290-305, 2003.

Prentice-Hall, 1981. [14] J. L. Peterson. Petri nets. ACM Computing Surveys,

[2] R. E. Bryant. Symbolic manipulation with ordered 9(3):223-252, September 1977.

binary-decisi6n diagrams. ACM Computing Surveys, [15] QoS-UniFrame.
24(3):293-318, 1992. http://www.cis.uab.edu/liush/QosUniFrame.htm.

[3] L.A. Cortfs, P. Eles, and Z. Peng. Formal coverifi- [16] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Ol-
cation of embedded systems using model checking. son, and C. C. Burt. A quality of service-based frame-
In Proc. 2 6 th EUROMICRO Conf., pages 106-113, work for creating distributed heterogeneous software
2000. components. Concurrency and Computation: Prac-

tice and Experience, 14(12): 1009-1034, 2000.
[4] L.A. Cort6s, P. Eles, and Z. Peng. Verification of em-

bedded systems using a petri net based representation. [17] D. C. Schmidt. R&D advances in middleware for dis-
In Proc. 13 th Intl. Symp. on System Synthesis, pages tributed real-time and embedded systems. Communi-

O 149-155, 2000. cations of the ACM, 45(12):43-48, 2002.

Quality of Service-Driven Requirements Analyses for Component Composition:
A Two-Level Grammar++ Approach1

Shih-Hsi Liu 2, Fei Cao2, Barrett R. Bryant2, Jeff Gray2, Rajeev R. Raje 3, Andrew M. Olson3 ,
and Mikhail Auguston4

Abstract to include non-functional properties such as real-time and
security issues. When DRE systems are constructed, QoS

Component-based software engineering offers the op- plays a critical role in determining the quality of the sys-
portunity to assemble entire systems from components. tern. Along with functional specifications and models of
When applied to Distributed Real-Time and Embedded the components, QoS attributes must also be specified and
(DRE) systems, which components to assemble and how to validated. The vision of the UniFrame project [9] is the de-
assemble them are determined not only from functional cor- velopment of techniques and tools that will enable software
rectness criteria but also assurance of the system's quality engineers to construct a DRE system by locating software
of service (QoS). This paper presents a grammatical QoS- components scattered about an organization or from third
driven approach to optimize component assembly by reduc- parties, evaluating the compatibility of heterogeneous com-
ing the search space of assembly alternatives by eliminating ponents, generating connectors for the dissimilar pieces and
infeasible components, with feasible components selected validating a system composed from them.
based on reasoning about non-functional requirements. The This paper presents a grammatical QoS-driven approach
reasoning is realized by a rule engine with a knowledge to solve the challenges of black box component compo-
base derived from the requirements phase of the software sition based on QoS. This approach expresses the system
lifecycle. In addition, the grammatical approach introduces requirements in terms of QoS parameters and manipulates

S well-defined semantics among the components being com- the QoS requirements using grammar rules which assure the
posed. The semantics assist in precisely and efficiently eval- correctness of the composition with respect to QoS and pre-
uating the individual component QoS, as well as system- conditions and post-conditions of each composition. This
wide QoS in a programmable fashion. The result is tofacil- verification assists in eliminating the infeasible alternatives
itate straightforward and manageable component composi- for any pre-condition or post-condition that does not satisfy
tion analyses from the perspective of QoS requirements. the corresponding QoS constraints (i.e., facts) stored in the

knowledge base. The knowledge base consists of specific
1 Introduction composition rules for inferring the applicability of compo-

Distributed Real-Time and Embedded (DRE) software nent composition. If all conditions are verified, the compo-

systems are becoming increasingly complex. Such com- sition is assured. The systematic optimal solution of all QoS

plexity can only be managed by Component-Based Soft- parameters can be evaluated by defining a specific QoS util-

ware Engineering (CBSE), that is, building such systems ity function of various QoS parameters. The specification

from a collection of standardized and customized compo- of QoS requirements using grammar and rules facilitates

nents. The integration of such components into a software the straightforward and manageable component composi-

system is the major effort in constructing such systems. An- tion analyses from the perspective of QoS parameters.

other dimension of such systems is the notion of Quality The paper is organized as follows: the next section pro-

of Service (QoS), which transcends functional properties vides background; section 3 proposes the concepts and an
example; section 4 concludes the paper.

IThis research is supported in part by U. S. Office of Naval Research
award N00014-01-1-0746. 2 Background

2 Department of Computer and Information Sciences, University of Al-
abama at Birmingham, Birmingham, AL 35294-1170, USA, {liush, caof, The evolution of new techniques for software develop-
bryant, gray} @cis.uab.edu ment is driven by the requirements of scalability within

3 Department of Computer and Information Science, Indiana the growing complexity and size of modem software. To
University-Purdue University-Indianapolis, Indianapolis, IN 46202- avoid developing scalable complex systems from scratch,
5132, USA {rraje, aloson}@cs.iupui.edu

4 Department of Computer Science, Naval Postgraduate School, Mon- CBSE enables the composition of commercial off-the-shelf
terey, CA 93943-5193, USA {maugusto} @nps.navy.mil (COTS) components, thereby benefitting software develop-

ment by reusing and replacing components as needed. Soft- for TLG++. In our approach, every QoS parameter is repre-
ware product lines [4] enrich the merits of CBSE by ana- sented by a class of TLG++: the first CFG shows the com-
lyzing and constructing a set of software systems that share ponents of alternatives and the necessary parameters used
commonality and variability under specific considerations. for the function definitions. The second CFG describes the
The integration of CBSE and software product lines expe- function definitions, which include the reasoning operations
dites the pace of software development, and proliferates the and computational operations (i.e., composition semantics)
productivity of software products. The integration poses the regarding QoS parameters. The reasoning operations are
following challenges for QoS-sensitive systems: used for analyzing and verifying pre-conditions and post-

The Component Perspective Problen conditions of each composition. For the pre-conditions, pre-

Functional requirements define the functionality that sys- liminary queries verify that the components own the appro-

tems should perform, and non-functional requirements priate functions operating the QoS. Analytic queries then re-

specify constraints on system resources. Most systematic quest the QoS information of specific components. For the

requirements analyses are component-driven [8], i.e., the post-conditions, the conclusive queries send back the com-

analyses are based on the perspective of components and posed "pattern" (i.e., the selected components and the QoS

their functional requirements rather than non-functional re- dataflow among these components) to avoid any conflict

quirements. The primary insufficiency of the component- with respect to the constraints; namely, verification of post-

driven analyses for QoS-sensitive system is that non- conditions. If preliminary, analytic or conclusive queries

functional requirements are often tangled with functional return false, the alternative is infeasible and discarded.

ones. As numerous QoS characteristics require evaluation, We use Jess [5] as the underlying rule inference engine

separation of requirements concerns assists in manageably for reasoning about alternatives' feasibility regarding QoS

evaluating functional and non-functional requirements. requirements. Jess is a forward and backward chaining rule
engine for the Java platform, which bridges Java and the

The Abundant Alternatives Problem rule-based language. Jess includes a Java library for defin-
Hundreds of alternatives are generated based on the require- ing rules, facts and queries, and for invoking the rule en-
ments of different composition decisions and permutations gine. The knowledge base accumulates the facts and rules
of selected components. The evaluation and management regarding the components and QoS parameters. Queries re-

of abundant alternatives result in intensive workloads in the qesar sin f the facts and rules stored ie
requremets pase.quest answers inferred from the facts and rules stored in the

Srequirements phase. knowledge base. The querying results obtained from the

The Composition Semantics Problem rule engine are converted into interpretable Java objects for
Because component-driven analyses concentrate on the further processing tasks written in Java.
component units, the correlative composition semantics are The primary concepts and motivations of applying
not rich enough to state the composition influences on the TLG++ to a QoS requirements analyses approach in the
QoS parameters. For example, the description of degrada- context of CBSE and software product lines assume the fol-
tion and upgrade of certain QoS parameters is difficult by lowing: (a) the components, having functions computing a
the component-driven composition semantics. Therefore, QoS parameter, are like the operands of an expression; (b)
the evaluation of QoS parameters may not be performed in composition semantics are treated as the operator of two
isolation, especially for some QoS parameters which mutu- (sets of) components; (c) production rules 5 are the counter-
ally influence one another. parts of composition decisions, which imply the dataflow

of the QoS parameters among components. Constructing
3 A Grammatical QoS-Driven Approach a system is actually the same as defining a programming

Two-Level Grammar++ (TLG++) [3] is an object- language with syntax and semantics. Under such a con-

oriented formal specification language, which consists of cept, Extended Backus-Naur Form (EBNF) [1] can repre-
two Context-Free Grammars (CFGs) defining the set of pa- sent mandatory, alternative (i.e., one of), optional and "OR"rameters and the set of function definitions over the parame- (i.e., more of) features of components involved in a soft-
ters, respectively. Originally, TLG++ was used for defin- ware product line, as in Feature-Oriented Domain Analysis
igther rspectil Orndsemallys TLof wro asming usednfo ef- [6]. The syntax trees generated by applying different sets of
ing the syntax and semantics of programming languages: production rules can be treated as the counterparts of the al-
the first level consists of the production rules of the syn- ternatives of a software product line. TLG++, consisting of
tax and the second level interprets the semantics of these

rules. ThG++ has been used for both specification of rules two tightly coupled CFGs, is appropriate for the grammati-

for component assembly [2] and for composing features to cal QoS-driven approach to define customized and compre-

describe the characteristics of components [10]. In addition, hensive semantics for component composition.

TLG++ code can be automatically converted into Java us- 5Production rules may have ambiguity, left recursion and left factoring. ing T-Clipse [7], an Integrated Development Environment problems. Analyzers should avoid these grammatical problems.

Figure 1 shows the procedures for analyzing systematic starting point of a QoS dataflow. The consequent compo-
QoS requirements. First, analyzers write all QoS parameter nents are opted by specific decisions such as AND and OR.
classes in TLG++, which define the involved components AND means the dataflow streams into a set of components,
and the composition semantics among the components re- and OR implies the new alternatives of the software prod-
garding the QoS parameter. T-Clipse transforms TLG++ uct line are generated. As a QoS dataflow requires a new
into Java. Second, the strict QoS parameters are evalu- composition decision, a new TLG++ class is written: the
ated, because they are the strict feasibility criteria for the parameters include the new components being selected, and
alternatives. Third, all orthogonal QoS parameters are in- the functions define the composition semantics between its
dividually evaluated, and every set of non-orthogonal QoS ascendant and itself with respect to the QoS dataflow.
is collectively estimated. Orthogonal QoS parameters im-
ply that adaptation will not influence other QoS parameters, The upper box of Figure 3 represents the TLG++ class
yet non-orthogonal QoS parameters substantially influence for the first production rule in Figure 2, the starting point
other QoS parameters. After all sets of non-orthogonal QoS of the Security QoS dataflow. In the upper box, line 2
are assured, the cumulative goals, the final selection criteria comprises the first CFG that defines the selected compo-
of alternatives, can be computed by a user-defined algebraic nents for the second CFG. Lines 3 to 29 comprise the sec-
function over all assured QoS parameters. All of the fulfill- ond CFG that describes the semantics for composition, in-
ing patterns of the software product lines will be stored in cluding computational and reasoning operations. Lines 3
the knowledge base for the future queries. In the situations and 4 verify the pre-conditions of Components Comp-l and
that strict, orthogonal or non-orthogonal QoS are not satis- Comp_2. In "queryComponent" (lines 12 to 27), the func-
fled, a new (set of) component(s) will be selected as a new tions of the Java API for the Jess rule engine (e.g., exe-
alternative to be evaluated. cuteCommand) are invoked. Lines 13 to 15 define the query

Query QoS information for searching the facts of QoS parameters. Lines 18 to 21
o p Write TLG classes for QoS Parameters define where the querying results should be stored. Lines

and convert them into Java by T-Clipse 23 to 25 comprise the semantics that define how to fetch the
a Aelements of the facts of the QoS parameter. After verify-

-h EvaluatAl VStrict oSParameters ing the pre-conditions, lines 5 to 6 compute the QoS value

Rule N .EvaluaeAll Orthogonal rPoS Parameters based on the composition semantics defined in line 28. Fi-and he E u .'is YES
Engine ,nally, line 9 verifies the post-condition of the composition

Knowledge PAll metsefo-rsoo oandthe o l Evauate All Sara of No •-o ,ogo e QoS I by checkin g if the com posed Q o S value is out of range. T he
Base t lower box of Figure 3 is the Security.2 class for compos-

It YES

NO -Evaluate CumulativeGoalsofte ing Security-l using the second production rule based on
Alternatives the cascading scenario. In the lower box, the semicolon

YES

Save the assured pattern back as a new tac in line 2 means there are optional components for the soft-
ware product line (i.e., the counterpart of "I" in the EBNF).

Figure 1. The procedures of the approach. Therefore, this box contains two composition semantics for
Figure 2 shows the user-defined grammars for each QoS components Comp_3 and Comp_4, respectively. Signal is

parameter: the Ci are the terminals that represent compo- defined in the similar way using its grammar in Figure 2.
nents, and Dj, Ek, and F, are nonterminals that describe the
composition decision and the QoS dataflow. The left box, For non-orthogonal QoS analyses, it is difficult to find
the middle box, and the right box, are the grammars for the optimal balance when one non-orthogonal QoS para-
Security, Signal, and a set of non-orthogonal QoS (Time, meter increases and the other one decreases. The coarse-
CPU Usage, and Battery Life), respectively. Please note grained scenario extends the cascading scenario for non-
that some production rules have left factoring, which may orthogonal analyses. All sets of non-orthogonal QoS pa-
be eliminated as described in [1]. rameters are written in TLG++ classes using the cascading

scenario. A TLG++ class defines a weighted algebra func-
I Security -) Ci C2 DI I Signal -->C I C2 El I CPU C FI C2 tion overeach set ofnon-orthogonalQoS parameters (inthis
2DI C3D21C4D3 2 El -C3E2IC4E3 2 Fi -) C2C4F3IC3C4F4
3 D24 C4 C5 lC5 C6 IC5 E 3 P24 CS C6 F5 ICS IC6 F6 paper, Time, CPU Usage, and Battery Life) to discover the
4 D34C5D4lC5C7 3 E2 C6 C7 4 F3 4C7 C6

D44C3C7 4 E34C3C5E5C3C6 5 F44C2C5 maximum value. Figure 4 shows the decision trees of five
5 E44C4C6C7 6 F-)C3C7

ES 4 C7 7 F64C- C4 QoS parameters, expressing every composition decision as
a branch of the tree. If any component in a QoS dataflow vi-

Figure 2. Grammars for QoS parameters olates strict QoS (i.e., gray nodes), the following nodes (i.e.,

The cascading scenario is introduced to evaluate orthog- stripe nodes) are eliminated. The cumulative goal is com-

4 onal QoS parameters. A set of components is chosen as the puted by a user-defined algebraic function over all feasibleW goals of QoS parameters.

tdas' Security- I Implemenats Serializable o0
2 ProductLine :: Comp I Comp_2. // All other parameter declarations ignored ,1
3 Query_2 := semantics of queryComponem with Comp 1://verify pre-cond. of Comp_ 1.
4 Quer-y2 :=semantics of queryComponent with Comp 2;//verify pre-cond. of Comtp 2
5 Query_3= if Query_ I && Query_2, then semantics of minimum with
6 Comp- and Comp_2. else False, end ir!
7 Ilif both Query- I and Query_2 are true, compute the composition semantics of
8 //Comp-I and Coutp_2. Otherwise, stop analyzing the alternative
9 Query_4 := semantics of queryPattern with QoSValue;//verifies post-cond. check range
10 if Query_4. then MyRete semantics of UpdatePatten. else "False". end if.
II I/if Query_4 is true. die composed pattern is assured. Update the pattern to KB Q
12 semanabicsoftqueryCompol w... ithyCompo .. yft. fc oo 1a _ O
13 MyRete semantics of e.ec.teC....and with "(defquery QoSSearch (declare • t• • t tt c s a-' ' " 0 e '
14 (vuriables "comnp)) (qos (mycomponent ?comp) (myfanc ?rune) (qoslow "?low) 0 0 b
15 (qosup ?up)))': 0 b o oh 11 r -o "oo " - -0 0 o 0 P P0
16 /idefine the Jess query for the QoS parameter, which has the fields of components, 0 0 0 0 o oN P 2 2 2 2

2) 2 -. !. '2'2000"
17 //funnctons. lower boandmidupebound. o b - o wo . - a b -o .,l -o 0 "0
lb ValueVectol I := ValueVc . .semantics of addAll withValue l: '" -o I o I -oI w S :• ! b
19 //Store thle fields into ValueVector, an API provided by Jess' Java library ' a - " - " " ' ' 0 ' ."
20 MyRete semantics of store with "RESULT' and MyRete semantics of RunQuery R o • . 0 - .a ,. 0 o 1 9 a -
21 with "QoSSearch" and ValueVectorl 1; a 9 9 w , .
22 //Store the result of the query into the RFSULT variable E 0 0- oL a .9 - 0 0 " a _

23 MyRete semantics of executeCommand with "(rna-query QoSSearch "+ -
24 component+")""; //Run the query component is the variable of the query "
25 Iteratortl := MyRete semantics of fetch with "RESULT";IIRESULT saved to Iterator
26 iffltratorl = null, then return TRUE, else return FALSE, end if. Figure 4. Decision trees of QoS parameters
27 l/if the first field has no component defined, the pre-condition is not verified
28 semantics of mitnimum with Componentl and Component2 ://. ignored
29 /semantics of queryPar.e., and UpdatePattern e ignored. specification language. In Proc. of the 3 5 th
etnd class

class Security_2 implements Serializable. I/ All other parameter declarations ignored Hawaii Intl. Conf on System Sciences, 2002.
2 Product-Line :: Comp_3: Comp_4. //Comp_3 OR Comp_4 as alternatives http://www.hicss.hawaii.edu/HICSS-35/HICSS
3 semantics of ProductLine I with Componentl ://semantics for Comp_3 OR Comp 4
4 Query I := semantics of queryComponent w.ith Componenr 1l./verify pre-cond. papers/PDFdocuments/STDSL01.pdf.
5 I/queryComponent has same semantics in Figure 3
6 ifQueryl, then semantics of addition with Secuarity-l and Componentl.
7 else False, e..d If: [4] P. Clements and L. M. Northrop. Software Product
8 Query_2 := Rete semantics of qneryPatter with QoSValne; Addison-Wesley,
9 if Query_2. thrn Rete semantics of UpdateFact. Rete semantics of UpdatePattem. else Lines: Practices and Patterns.
10 *'Composition False". end if. //verify the post-condition
11 semantics of addition with Componentl and Component2 HI... ignored [51 E. J. Friedman-Hill. Jess 7.0, The Rule Enginefor the
12 //semantics of queryPattem, UpDateFact and UpdatePattem are ignored here.
etd class Java Platform. Sandia National Laboratories, 2005.

Figure 3. Security-l and Security_2 in TLG++ [6] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-
* son. Feature-Oriented Domain Analysis (FODA) Fea-

4 Conclusions sibility Study. Technical Report CMU/SEI-90-TR-21,

The grammatical QoS-driven approach defines the syn- Software Engineering Institute, Carnegie Mellon Uni-

tax of software product lines, and the semantics of the com- versity, 1990.

ponent composition from the QoS parameter perspective. [7] B.-S. Lee, X. Wu, F. Cao, S.-H. Liu, W. Zhao,
The approach eases the burden of management and evalu- C. Yang, B. R. Bryant, and J. G. Gray. T-Clipse: An
ation of QoS that the component-driven approaches suffer integrated development environment for Two-Level
from. It also achieves three goals: reducing the infeasi- Grammar. In The OOPSLA'03 Eclipse Technology Ex-
ble alternatives, assuring the feasible ones, and manageably change Workshop, pages 91-95, 2003.
evaluating orthogonal QoS and mutually-influenced QoS.
Finally, a stand-alone inference engine separates the infer- [8] M. Matinlassi. Comparison of software product line
ence concern for component composition. architecture design methods: COPA, FAST, FORM,

KorbA and QADA. In Proc. of the 2 69h Intl. Conf.
References Software Engineering, pages 127-136, 2004.

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers [9] R. R. Raje, B. R. Bryant, M. Auguston, A. M. Olson,

Principles, Techniques, and Tools. Addison-Wesley, and C. C. Burt. A QoS-based framework for creating
1986. distributed and heterogeneous software components.

Concurrency and Computation: Practice and Experi-
[2] B. R. Bryant, M. Auguston, R. R. Raje, C. C. Burt, ence, 14:1009-1034, 2002.

and A. M. Olson. Formal specification of generative
component assembly using Two-Level Grammar. In [10] W. Zhao, B. R. Bryant, F Cao, R. R. Raje, M. Au-

Proc. of 14 th Intl. Conf on Software Engineering and guston, C. C. Burt, and A. M. Olson. Grammatically
Knowledge Engineering, pages 209-212, 2002. interpreting feature composition. In Proc. of 16'h Intl.

Conf. on Software Engineering and Knowledge Engi-
[3] B. R. Bryant and B.-S. Lee. Two-Level neering, pages 185-191, 2004.

O Grammar as an object-oriented requirements

* Marshaling and Unmarshaling Models Using
the Entity-Relationship Model*

Fei Cao, Barrett R. Bryant, Rajeev R. Raje, Andrew M. Olson
Wei Zhao, Carol C. Burt Department of Computer and Information Science

Department of Computer and Information Sciences Indiana University-Purdue University-Indianapolis

University of Alabama at Birmingham 723 W. Michigan Street SL 280, Indianapolis, IN 46202, USA

1300 University Boulevard, Birmingham, AL 35294, USA {rraje, aolson}@cs.iupui.edu
{caof, bryant, zhaow, cburt} @cis.uab.edu

Mikhail Auguston
Computer Science Department

Naval Postgraduate School
I University Circle, Monterey, CA 93943, USA

maugusto@nps.edu

ABSTRACT language. But other non-UML based modeling notations abound as

Software systems are usually designed and documented with the aid evidenced in such publications as JVLC 2. Meanwhile, a lot of work

of visual modeling notations. Visual modeling notations keep has been done to converge the diagram notations in the new version
evolving over the years in tandem with visual modeling tools, and of modeling notations, as is mentioned in the recent interview with
the tight binding in between impedes the exchanging of modeling Keith Short3 . But to converge all the legacy software modeling

assets, which causes a spatial isolation of the models. Another assets by reengineering into new generation notations and totally
problem with legacy software models is that they are isolated discarding old legacy modeling notations is not only time-

temporally in the early phases of the software engineering life cycle consuming, but also not cost-effective. Depending on different usage

w ithout reaching out to the later phases. This paper presents an scenarios, there is a need for marshaling models across different
•pproach for breaking both spatial and temporal isolation of modeling facilities to take advantages of the leverages provided by

software models by marshaling and unmarshaling models using the existent modeling facilities.

Entity-Relationship (ER) model, thus providing a promising way for
evolving model-driven software development. The term Marshaling comes from the distributed computing area

where heterogenous data types are always translated into some
common data type over the network so as to be consumed at the

Categories and Subject Descriptors other end of the distributed environment, where the common data
D.2.2 [Software Engineering]: Design Tools and Techniques type is unmarshaled again into another environment-specific data

type. Here we use the ER model [2] to represent the "common data
type", i.e., the intermediate model when exchanging and evolving

Keywords models. The rationales are as follows:
Marshaling and unmarshaling models, Modeling and meta- - Sufficiency. Even though UML is widely adopted in software
modeling, Entity-Relationship model modeling, which seems to justify the use of UML as a common

model for exchanging model assets across modeling facilities, UML

1. INTRODUCTION is not convenient for model serialization, thus not fit for modeling
Software systems are usually designed and documented with the aid asset exchange and evolution. In fact, the object diagram [1], for
of visual modeling notations. Visual modeling notations keep which UML is used to capture and store the snapshot of software
evolving over the years in tandem with visual modeling tools, and system state, is represented virtually in an Entity (object) and
the tight binding in between impedes the exchanging of modeling Relationship (links) model. Moreover, the UML modeling language
assets. Above all UML' stands out as the defacto standard modeling has its roots in the ER model, and the latter is already widely used as

the foundation for CASE tools in software engineering and
repository systems in databases4 .

* This research is supported by the U. S. Office of Naval Research - Necessity. Not only models, but also meta-models are in need of
under the award number N00014-01-1-0746. exchanging and evolution; the justification for the latter is obviously

the same as the former. Therefore, the intermediate model should be
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear 1 Unified Modeling Language-http://www.omg.org/uml
this notice and the full citation on the first page. To copy otherwise, or 2 Journal of Visual Languages and Computing-http://www.elsevier.
ublish, to post on servers or to redistribute to lists, requires prior specific jvlc

ission and/or a fee. 3mIntervis

WsC 05, March 13-17, 2005, Santa Fe, New Mexico, USA. Interview with Keith Short, http://www.theserverside.net/talks/
Copyright 2005 ACM 1-58113-964-0/05/0003.. $5.00. library.tss#KeithShort.

4 http://bit.csc.lsu.edu/-chen/chen.html

expressive enough to be at the meta-meta model level in the meta- 3. THE APPROACH
level stack [3]. The meta-meta-model is described by the Meta
Object Facility (MOF)5, which is a set of constructs used to define 3.1 A Web Services Modeling Example
meta-models. The MOF constructs are the MOF class, the MOF Modeling Web Services (WS) is a promising way for service
attributes and the MOF association. These constructs correspond to description and orchestration at a higher level. As the scope of this
an ER representation (by using an Entity to represent a MOF class), paper is about marshaling and unmarshaling models, the elicitation
which indicates that the ER representation is semantically equivalent of models from requirements is skipped here.

to MOF fundamentally. Therefore, we believe the ER representation One of the characteristics of a meta-model is that it treats not only

is the right vehicle to play the dual roles of marshaling both models the models, but also the inter-relationships among models as first-

and meta-models to break the spatial isolation of software models. class entities. We derive meta-models by abstracting models and

Also, other non-UML based languages, even though not as popular, their inter-relationships. Therefore, for the models, even though they

are abundantly present, for which UML is not an omnipotent cure. are represented as UML diagrams here as the starting point of the
marshaling/unmarshaling process, they will not compromise the

Recent years have seen the emergence of the Model Integrated generality of the approach as is described in the remainder of the
Computing (MIC) [7] paradigm, which moves a step further to break paper. To be specific, our approach of marshaling and unmarshaling
the isolation of models from implementation and the subsequent WS models consists of two steps:
phases in the software engineering life cycle. In MIC, a meta-model 1) Marshal models by converting the 00 class diagram to an
is created to define a model construction language, and a generator ER-based meta-model, for which the relationship

is also to be created based on the meta-model to synthesize the corresponds to aggregation, association, generalization,
constructed models by traversing the model tree. In this way, a and dependency, while the entity corresponds to class.
model can be more accurately interpreted for code generation than 2) Unmarshal models by mapping the ER-based meta-model
the direct mapping-based approach such as using profiler or to the tool-specific (here GME in particular) meta-model
stereotype in Rational Rose [3]. Toward that end, this paper presents to create a WS modeling environment.
an approach for marshaling software models to ER models, which, The UML class diagram of WSDL elements is shown in Figure 2.
by taking advantage of the dual roles of ER models, are unmarshaled
into an environment-specific meta-model to be integrated into MIC.
Consequently, not only the spatial isolation, but also the temporal
isolation of software models can be broken. '."S"~~. ' 1.. e

"# his paper is organized as follows: Section 2 briefly provides an
Wverall picture of this approach. Section 3 uses Web Services (WS)

[5] modeling as a proof-of-concept example to illustrate the whole input
process. Section 4 describes the related work. We conclude in
section 5 with a brief description of future work included. Figure 2. The architecture of WS description elements

2. OVERVIEW The WS messages, which are either input or output messages, are
Figure I shows the process of marshaling and unmarshaling models. composed of parts, each of which corresponds to a specific data
Generic Modeling Environment (GME) [4] is the tool for MIC type. The portType is an abstract WS interface definition, where
paradigm, and we use it as the targeted tool environment for each contained element, i.e., the operation, defines an abstract
describing destination meta-models, whereupon the domain-specific method signature. The operation uses messages as its parameters.
modeling environment can be constructed. Through the process flow Binding represents an instantiation to the abstract portType with
as is directed by the arrows, meta-models can be elicited from concrete protocol and data type. Service is a collection of ports,
models with an automatable process as opposed to traditional denoting a deployment of a binding at a specific network location.
practice, for which the meta-model is constructed in an error-prone,
ad-hoc way. Consequently, models of legacy systems can be evolved 3.2 Marshaling the WSDL Model
toward the MIC paradigm for model-driven software development. Figure 3 gives the meta-model of WSDL in ER form (without

M 3: ER Model considering the extension part enclosed with the dashed lines),
which is derived by representing the links (association,

nmarshal generalization, dependency) in the class diagram in Figure 2 as a
"relationship in Figure 3, as well as representing those classes as an

M2: entity accordingly. Note we ignore type in the meta-model of Figure
marsha GME Meta-Model 3, because we can put type directly as the attribute of the part

element. Also note we will not annotate the attributes to the entities
and relationships in the ER representation as the focus here is about

M 1: Model domain specific model the model marshaling and unmarshaling; the attributes will be
annotated in the GME meta-model as shown later.

When modeling WSDL for real business domain services
Figure 1. Marshaling and unmarshaling models implemented with specific technology, we use the generalization

relationship to extend those WSDL elements in Figure 3 rather than
Meta-Object Facility - http://www.onig.org/technology/documents/ embedding the business domain service information as attributes to

formal/mof.htm those WSDL elements. This avoids obfuscation of business and

se ic poype operation o o

BInkAccount PersonalAccount I
input I I ° tu

checking saving

agrgtoIftr
ext41

aggregation generalization association

Figure 3. The ER-based meta-model of banking Service WSDL: the three parts enclosed with
dashed line represent the extended part to the WSDL meta-model.

case 1 case 2 case 3

Saggregatin generalization <* association

Figure 4. The cases of mapping from ER-based Meta-model to GME.
based meta-model based on the relationship in ER representation.

Root WebSerylce l.-o.

mess age

Ili' Inpu |•[;'1''0 • -- I oSPa.....ters | .. !

.- "- -Cnefn- -,'•om- jbinl~ngTech

--- IA~ailability: , field D ateDeployed :field [[•." , I Capacity: field ID: field binding port

Op" ,rne 3 0 '. Maintainability: field I..- Version: field en. i

O- Portability: fieldo
Jhone: fillalande , ie urr o nity : field

• - Throughp Ut field

PersonalAccount FCO• Ie .pn bll
.. toN - il Accountl~umber : field

address : filat Pin :1 1field 2E

phone : fItl Balance : fielddAlr- ,MIo -Ao ý

Fchecking saving query dpst wlhr' la~er vr~~lf
7ýAtomvv vvAtoMvv .. A>v v-oevAov .~ov A~

Finterest-rate fiodn

O Figure 5. The meta-model of banking domain WSDL in GME

technology domain structure (meta-models of business/technology 3) B is specialized from A
domain applications) with WSDL elements, and provides a In this case, A is rendered by an abstract FCO (First Class Object,
separation of concerns toward domain-specific model refinement, tagged with <<FCO>>, represents an abstract generalization of
The business domain information applies a generalization other modeling constructs), a modeling element to be used as an
relationship to the operation entity, and technology domain abstract interface in GME, and B is represented as an inherited class
information applies a generalization relationship to the binding to that FCO. Note there are two special treatments here: firstly, for
entity. To exemplify, below is a simple banking domain service the input/output elements of Figure 3, they are only used to tag the
specification: connection (named either "input" or "output") between message

A bank provides the service for users to entities and its interconnecting entities in GME; secondly, the
set up accounts. Account information includes generalization relationship between binding and portType is actually
personal data including Name, SSN, phone treated as an association when modeling in GME, because the
number, address, and account data including binding entity actually attaches values of the chosen protocol to the
Account Number, PIN, Transaction Record, portType in WSDL rather than in the real sense of inheritance.
Balance. There are two types of accounts:
checking account and savings account. Figure 5 shows the meta-model created by mapping from the WSDL

For the bank side, it provides such meta-model of the banking domain with ER representation to that in
services as: Account Verification, Account the GME strictly observing the above mapping rules. The model
Query, Deposit, Withdraw, and Transfer. WebService corresponds to the service entity in Figure 3. The boxed

The banking service implementation may use part of the models in Figure 5 are attributes for the related models to
such technology as RMI, J2EE, and CORBA. Also be instantiated in the modeling phase, described in the next section.
it will enforce some Quality of Service (QoS)
requirements such as Availability, 3.4 The Domain Specific Modeling Environment
Dependability, Capacity. After a meta-model is derived by marshaling and unmarshaling

Figure 3 shows the ER-based meta-model of this banking service models, a domain specific modeling environment (which is also a

WSDL (including those parts enclosed by dashed line). The crucial part of MIC) can be created based upon the meta-model. To

elicitation of models from natural language requirements is beyond complete the description of the model evolution process shown in

the scope of this paper. As can be seen from the figure, a typical Figure 1, Figure 6 shows the screenshot of the banking-domain WS

business domain service represented as WSDL involves the modeling environment based on the meta-model illustrated in Figure

extension of ER elements, which is associated to almost all the 5. The lower-left comer provides the modeling elements that can be

•lements of WSDL. Nevertheless, by using the ER-based meta- dragged and dropped in the upper-left pane for constructing a
model, such extension still keeps the original WSDL meta-model as banking service model. The names of the models in the lower-left
shown in Figure 3 without being restructured, pane represent the meta-model names (kind names); when those

models are dragged to the above pane, the model name can be
changed to reflect the meaning of the model in the domain-specific

3.3 Unmarshaling the WSDL Model context, which we call a context name. Furthermore, the domain-
In GME, the containment relationship is represented by using a specific model can be traversed and interpreted in terms of code
model element (tagged with <<model>>), which, in contrast to an generation using the GME Builder Object Network (BON)
atom element (tagged with «atom>>), can contain other modeling framework [4].
elements. Also the contained elements can be promoted as ports of
the model to have direct connections with external modeling 4. RELATED WORK
elements. GME uses a root model as an entry point of access to all

the modeling elements. Also, the relationship of ER is represented The ER model, because of its powerful modeling capacity, can be

in GME as a first-class modeling element, connection (tagged with used as an intermediate form for model-to-model and meta-model-

<<connection>>), with a connector in the form of a dot to associate to-meta-model exchange. Because of the dual role that the ER model

this relationship with two modeling elements (entities). can play, it is treated as an intermediate form for model-to-meta-

The mapping from the ER-based meta-model to the counterpart model elicitation, which is the theme of this paper. This idea is very

in GME is based on the relationships in the ER representation. Three similar to grammar inference [6], where a grammar can be inferred

cases are involved as is shown in Figure 4: from language examples. But the two approaches are applied at
different abstraction levels. XMI6 provides a standard mapping

1) A contains B from MOF-based nodels to XML, which can be exchanged between

In this case, A can be modeled as a model element in GME software applications and tools. In comparison, ER-based model

containing B. marshaling and unmarshaling represents a design-level approach for
evolving design assets, without being restricted to low-level data

2) B is associated to A representation specifics. Also, note that the XMI-based approach

In this case, a connection can be added to be associated with the A uses top-down mapping, while the ER-based approach uses bottom-

and B representations in GME. The connection element can be up mapping as is illustrated in Figure 1, which offers a means for

named with respect to A's or B's properties as a kind of tag, e.g., the meta-model recovery for evolving legacy software models into

tag can be named as the combination of both A's name and B's Model Integrated Computing.

m Note when the situation as described in case 3 applies, then
s tag should be named as in case 3.

6 XML Metadata Interchange - http://www.omg.org/technology/

documents/formal/xmi.htm

P1

".. " , " >; • -

az- peo Tbtmp

Figure 6. The banking domain-specific WS modeling environment.

Model Driven Architecture (MDA)7 is about mapping Platform technology such as XSLT'0 . The ER model is easy to be represented
Independent Models (PIM) to Platform Specific Models (PSM) for in XML because of its simple structure. An Eclipse-based ER
engineering legacy software systems so as to be integrated into new modeling tool such as [8] that can generate XML specifications from
platform. However, the core part of mapping technology for MDA is ER models will be helpful in this regard. The models in GME can be
either ad-hoc or pre-mature before MDA can be fully adopted in exported and imported as XML. Therefore, an XML specification for
industry. ER-based model marshaling and unmarshaling offers a an ER-model can be directly transformed to the expected XML
potential solution to address this problem systematically. It has been specification for destination meta-models and loaded into GME
bserved that ER representation has been adopted in defining consequently. Note that the simple structure of ER models does not

4kn owledge Discovex7 Meta-Model (KDM)8 and Ontology Definition require an XMI-based data representation. Moreover, such existent
Meta-Model (ODM) in OMG, which underscores the role that ER tool as GME does not use XMI for model serialization and
plays for model marshaling and unmarhaling. deserialization, for which a simpler and more flexible XML schema is

desired for marshaling and unmarshaling models.

5. CONCLUSION AND FUTURE WORK
Legacy software models are widely existent and heterogeneous in 6. REFERENCES
their own graph syntax, and there are two types of isolation in its [1] G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling
application: Spatially, models are isolated from being exchangeable Language User Guide. Addison-Wesley, 1999.
over software applications and tools; Temporally, models are isolated [2] P. P. Chen. The Entity-Relationship Model: Toward a Unified
in the early phases of the software engineering life cycle. These two View of Data. ACM Trans. Database Systems, 1(1), 1976, 9-36.
types of isolation status of software models restrict their usability and [3] D. S. Frankel. Model Driven Architecture: Applying MDA to
capacity. Toward that end, a model marshaling and unmarshaling Enterprise Computing. Wiley, 2003.
approach is presented based on the ER model, a simple, yet powerful [4] GME 2000 User's Manual, Version 2.0. ISIS, Vanderbilt
modeling notation. This approach offers a promising way to break not University, 2001.
only spatial isolations, but also temporal isolation by evolving legacy [5] S. Graham, S. Simeonov, T. Boubez, D. Davis, G. Daniels, Y.
software models toward MIC for fully exploiting models throughout Nakamura, R. Neyam. Building Web Services with Java. SAMS,
the software engineering life cycle. In particular, this paper uses a WS 2002.
modeling example to illustrate an automatable process on how legacy [6] C. de la Higuera. Current Trends in Grammatical Inference. In
software models can be migrated toward a MIC-oriented Proc. Joint IAPR Int. Workshops SSPR & SPR 2000, 2001, 28-
environment. 31.

[7] A. Lrdeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J.
To ultimately automate the marshalling and unmarshaling process, Sprinkle, and G. Karsai. Composing Domain-Specific Design
future work will involve representing various models as well as ER Environments. IEEE Computer, 34(l1), 2001,44-51.
models in the form of proper XML specifications, whereupon the [8] S. Zhou, C. Xu, H. Wu, J. Zhang, Y. Lin, J. Wang, J. Gray, B.
automation process can be applied by XML transformation R. Bryant. E-R Modeler: A Database Modeling Toolkit for

Eclipse. In Proc. 42th ACM Southeast Conf., 2004, 160-165.

,tttp://www.omg.org/mda/
lttp://www.omg.org/cgi-bin/doc?lt/2003-11-4

http://codip.grci.com/odmi/draft/submissiontext/ODMPrelimSubAu
g04R 1 .pdf 1http://www.w3.org/TPRxslt

A Meta-Modeling Approach to Web Services

Fei Cao, Barrett R. Bryant, Wei Zhao, Carol C. Rajeev R. Raje, Andrew M. Olson
Burt Indiana University-Purdue University-

University ofAlabama at Birmingham Indianapolis
(caof bryant, zhaow, cburt} @cis.uab.edu (rraje, aolson}@cs.iupui.edu

Mikhail Auguston
Naval Postgraduate School
auguston@cs. nps. navy.rmil

Abstract contradiction to the general practice of software

engineering, for which the design phase precedes the

Web Services (WS) technology is becoming pervasive in implementation phase. We believe generating WSDL

the development of distributed systems and is an from the design-level model directly offers an

appealing vehicle for service presentation and appropriate solution.

horizontal integration. On the other hand, Model In this paper we present a meta-modeling approach

Integrated Computing (MIC) offers a means of system to WS based on the principles of Model Integrated

integration in the vertical direction by using domain- Computing (MIC) [5]. In MIC, meta-models can be

specific modeling, and then synthesizing the software used to define modeling language. Consequently, WS

system from the high-level model using a model-specific artifacts (WSDL) can be automatically generated from

generator. This paper presents a meta-modeling the WS model with generators. The Generic Modeling
h WS the gene . Environment (GME) [4] is a tool realizing MIC forW approach to WSto explore teapplication of MCin craino

WS development and its contribution. of domain-specific models.
As is shown above, meta-modeling constitutes the

comer stone In MIC. This paper is not intended to
1. Introduction demonstrate the meta-modeling approach to all aspects

of WS (e.g., discovery and orchestration) exhaustively,
Web Services (WS) technology emerges as a which is not possible because of the space limitation,

Service Oriented Computing (SOC) ([8], [9]) paradigm but rather to focus on the elicitation of a tool-
to provide a platform-independent solution for system independent meta-model from WS requirements
integration horizontally: WS is built upon open specifications, and then to map the too-independent
standard XML and HTML for service description and meta-model to a tool-specific meta-model (here GME
transportation, and software systems can be presented meta-model in particular), which is to be used
as WS so as to be exported and consumed by throughout the main phases of MIC. This paper is
heterogeneous peers in the distributed environment, organized as follows: Section 2 details the meta-

For service description in Web Services Description modeling approach. Section 3 describes the related
Language (WSDL), though its XML-based work. Section 4 draws the conclusion.
representation is easy for machine processing using
widely existent XML parsers, such specification is not 2. Meta-Modeling of WS
straightforward for human comprehension, with service
architecture lost in the pure textual form, and hand- 2.1 Meta-modeling WSDL using Entity
crafting service description with WSDL is error-prone. Relationship (ER) representation
To overcome this problem, there are tools on the
horizon such as AXIS', and the Microsoft .Net Object-Oriented class diagrams are often used to
framework that provide the capacity of automatically document software system architecture. The
generating WSDL by parsing implementation code architecture of WSDL elements can be described as in
(such as Java and C#), and vice versa. However, WSDL Figure 1. Figure 2 gives the meta-model of WSDL (by
represents the design level knowledge, and the process removing the extension part enclosed with a dashed
of generating WSDL from implementation is in line), which is derived by representing the links

(association, generalization, dependency) in the class' http://ws.apache.org/axis/

When modeling a WSDL for real business domain
service portType operation services implemented with a specific technology, we

use the generalization relationship to extend those
WSDL elements in Figure 2 rather than embedding the

port 1 business domain service information as attributes to
1. 1those WSDL elements. This avoids obfuscation of

part1message business and technology domain structure (actually

1.meta-models of business/technology domain
1 applications) with WSDL elements. The business

domain information applies a generalization
t output relationship to the operation entity, and technology

domain information applies a generalization
Figure 1: the Architecture of WS Description Elements relationship to the binding entity. To exemplify, Figure

3 is a simple banking domain service specification.
diagram in Figure 1 as a relationship in Figure 2, as Figure 2 shows the ER-based meta-model of this
well as representing those classes as an entity banking service WSDL. As can be seen from the figure,
accordingly. a typical business domain service represented as WSDL

Note we ignore type in the meta-model of Figure 2, involves the extension of ER elements, which is
because we can put type directly as the attribute of associated to almost all the elements of WSDL.
the part element. Also note we will not annotate the Nevertheless, by using the ER-based meta-model, such
attributes to the entities and relationships in the ER extension still keeps the original WSDL meta-model as
representation as the focus here is about the meta-model shown in Figure 2 without being restructured, which
evolution; the attributes will be annotated in the GME helps generating WSDL from models with consistency.
meta-model as shown later.

The meta-model is represented by the ER 2.2 The Mapping from ER based Meta-model
representation [2] rather than by UML. The justification to Other Forms of Meta-model
of using ER representation as an intermediate meta-
model is as follows: In GME, the containment relationship is represented
Different meta-modeling tools such as GME may adopt by using a model element (tagged with <<model>>),
its own meta-model paradigm. Thus, there is a need for which, in contrast to an atom element (tagged with
a tool-independent meta-model representation as an <<atom>>), can contain other modeling elements.
intermediate form for meta-model transformation, so Also the contained elements can be promoted as ports
that tool-dependent meta-models can be evolved into of the model to have direct connections with
each other and used across different meta-modeling external modeling elements. GME uses a root model as
tools. This intermediate meta-model representation an entry point of access to all the modeling elements.
should be generic enough to describe a meta-meta- Also, the relationship of ER is represented in GME as a
model, which resides at the top level (M3 level) of first-class modeling element, connection (tagged with
Model Driven Architecture (MDA) 2 metalevel stack <<connection>>), with a connector in the form of a
[3]. The meta-meta-model used to define UML meta- dot to associate this relationship with two modeling
models is described by the Meta Object Facility elements (entities).
(MOF) 3, which is a set of constructs used to define The mapping from the ER-based meta-model to the
meta-models. The MOF constructs include MOF class, counterpart in GME is based on the relationships in the
MOF attributes, MOF association. These constructs ER representation. Three cases are involved as is shown
literally constitute an ER representation (by using an in Figure 4. For the sake of limited space, below we
Entity to represent a MOF class). Therefore, we believe only describe the mapping rules for case 3, i.e., B is
ER representation is the right vehicle for representing specialized from A. In this case, A is rendered by an
intermediate meta-model. Moreover, meta-model using abstract FCO (First Class Object, tagged with
ER representation is easy to be described and serialized <<FCO>>, represents an abstract generalization of
using XML [10]. This facilitates the meta-model other modeling constructs), a modeling element to be
exchange and processing using widely existent XML used as an abstract interface in GME, and B is
parsers. represented as an inherited class of that FCO. Note

there are two special treatments here: firstly, for the
input/output elements of Figure 2, they are only used to
tag the connection (named either "input" or "output")

32http://www.omg.org/mda/ between message entities and its interconnecting
http://www.omg.org/cgi-bin/doc?formal/00-04-03 entities in GME; secondly, the generalization

ee

r.• . <r i n i a ° s s.ar

BankAccount PersonalA count

<c@ ,o.aggregatio generalizatio aso

Figure 2: the ER-based Meta-model of Banking Service WSDL: the three parts
enclosed with dashed line represent the extended part to the WSDL meta-model

A bank provides the service for users to set up accounts. Account information includes personal data including Name, SSN, phone number, address,
and account data including Account Number, PIN, Transaction Record, Balance. There are. two types of accounts: checking account and savings
account.

For the bank side, it provides such services as: Account Verification. Account Query. Deposit. Withdraw, an~d Transfer.

The banking service implementation may use such technology as RMI, J2EE, and CORBA. Also it will enforce some Quality of Service (QoS)
requirements such as Availability, Dependability, Capacity.

Figure 3: the Banking Domain Service Description

case 1 case 2 case 3

a ggregation j generalization <.. association

Figure 4: the Cases of Mapping from ER-based Meta-model to GME
based Meta-model Based on the Relationship in ER RepresentationR oot H - - I Ir l " -

-- Model-- -- Model•- . .;;, q. port

Io rpe .. ant binding lt . .e ..i . Conne m- o-rModel- _rConnecion

Fiue-:thMet-odlodBnenlomi-WD-i M

Inpul | QoSParameters D .M.•t [o.-

O-- -- connection-- -- Atom--Dn~gTc

Adptability : -FCC Z O
IAvailability: field / DateDeoiloyed : field i.Capacit y•••:-.. field -= -T. ,o : field i bn gprI areto. . Maintainbliy I.. .. Version: field - ... ci..

field ecurity : field .

"T Throughput : field
Bank~account Tu rn-around-tlme : field

PersonalAccount •*C• .Dependablility: Yieldl

-- Atom-- AccountNumber : 112laddress fielj Pin, :l f ldC rb
phn : "il Balance : field-Atm

SSN: " field A '

0 0- Attr-'
Figure 5: the Meta-model of Banking Domain WSDL in GME

relationship between binding and portType is actually Meta-modeling of WSDL is a static structural
treated as an association when modeling in GME, modeling. Future work will include meta-modeling of

because the binding entity actually attaches values of WS behavior such as WS orchestration.
the chosen protocol to the portType in WSDL rather
than in the real sense of inheritance. 5. Acknowledgements

Figure 5 shows the meta-model created by mapping
from the WSDL meta-model of the banking domain This research is supported by the U. S. Office of Naval
with ER representation to that in the GME strictly Research under the award number N00014-01-1-0746.
observing the above mapping rules. Note the model
WebService corresponds to the service entity in Figure 6. References
2. The lower part of the models in Figure 5 are
attributes for the related models to be instantiated in the [1] Cao, F., Bryant, B. R., Burt, C. C., Gray, J. G.,
modeling phase as described in the next section. Raje, R. R., Olson, A. M., Auguston, M.,

Based on this meta-model, a WS modeling "Modeling Web Services: Toward System
environment can be constructed, and a generator based Integration in UniFrame," Proc. 7Ih World
on this meta-model can be created to interpret WS Conference on Integrated Design and Process
models to generate WSDL. The WS modeling Technology (IDPT'03), December, 2003, pp. 83-
environment as well as generated WSDL is described in 91.
[1]. [2] Chen, P. P., "The Entity-Relationship Model:

toward a Unified View of Data," ACM Trans.
3. Related Work Database Systems, March, 1976, pp. 9-36.

[3] Frankel, D. S., Model Driven Architecture:
In [6], MDA is used together with workflow Applying MDA to Enterprise Computing, Wiley,

technology for modeling and composing WS. But the 2003.
authors do not provide a guideline as to how to create [4] GME 2000 User's Manual, Version 2.0, ISIS,
the meta-models. Also the mapping from PIM to PSM Vanderbilt University. 2001.
is not detailed. In contrast, we focus on meta-modeling [5] Lddeczi, A., Bakay, A., Maroti, M., Volgyesi, P.,
WSDL only, while the meta-modeling approach is more Nordstrom, G., Sprinkle, J. and. Karsai, G.,
complete and general. In [7], an MDA approach is used "Composing Domain-Specific Design
for BPEL code generation from a UML design. This Environments," IEEE Computer, November, 2001,
approach uses XMI4 processing technology for UML pp. 44-51.
model exchange. Comparatively the XML [6] Lopes, D., Hammoudi, S., "Web Service in the
representation for the ER model is much simplified and Context of MDA," Proc. International Conference
easy to process in our approach. Code generation in [7] on Web Services (ICWS'03), June, 2003, pp 424-
is based on the UML profile mapping, which is not as 427.
flexible as a generator-based approach in our case. [7] Mantell, K., "From UML to BPEL: Model Driven

Architecture in a Web Services World,"
4. Conclusion http://www- 106.ibm.com/developerworks/

webservices/library/ws-uml2bpel/.
WS domain-specific modeling environment provides [8] Olson, A. M., Raje, R. R., Bryant, B. R., Burt, C.

a user-friendly environment to build WS with C., Auguston, M., "UniFrame-A Unified
underlying WS-specific details abstracted. This paper Framework For Developing Service-oriented,
presents a general meta-modeling approach to WS, Component-based, Distributed Software Systems,"
which is used for the construction of WS domain- to appear in Service-Oriented Software System
specific modeling environment In particular, we Engineering: Challenges and Practices, ed. Zoran
showed the merits of using the ER representation as an Stojanovic and Ajantha Dahanayake, 2004.
intermediate form for deriving and evolving meta- [9] Papazoglou, M. P., Georgakopoulos, D., "Service-
models to avoid the ad-hoc nature of constructing meta- Oriented Computing," Commun. ACM, October,
models, which is an problem that is often not addressed 2003, pp. 25-28.
(such as in [1]), particularly in constructing large-scale [10] Zhou, S., Xu., C., Wu, H., Zhang, J., Lin, Y.,
meta-models. Wang, J., Gray, J. G., Bryant, B. R., "E-R Modeler:

A Database Modeling Toolkit for Eclipse," Proc.
Annual ACM Southeast Conference, April, 2004,
pp.160-165.

4 XML Metadata Interchange - http://www.omg.org/

technology/documents/formal/xmi.htm

Model-Driven Reengineering Legacy Software Systems to Web Services

ABSTRACT

The advancement of internet technology enables legacy software systems to be reused

across geographical boundaries. Web Services (WS) have emerged as a new component-based

software development paradigm in a network-centric environment based on the Service Oriented

Architecture (SOA), the open standard description language XML and transportation protocol

HTAML. Therefore, legacy software systems can incorporate WS technology in order to be reused

and integrated in a distributed environment across heterogeneous platforms. In this paper, we

present a comprehensive, systematic, automatable approach toward reengineering legacy

software systems to WS applications, rather than rewriting the whole legacy software system

* from scratch in an ad-hoc manner.

Keywords: software system reengineering; Web Services; Model-Integrated Computing; meta-
model; model; model marshaling and unmarshaling; Entity-Relationship model

INTRODUCTION

Web Services as a Presentation Layer for Legacy Software Reuse and Integration

With the rapid advancement of software technology, more and more software systems

developed with the state-of-the-art technologies of yesterday are becoming legacy software

systems of today. Specifically, we define legacy software in a comparative manner, i.e., the

software systems are legacy if the languages, models or platforms they are developed with can be

replaced with new languages, models or platforms of advanced features and improved

capabilities. The reuse and integration of legacy software systems offer a promising direction for

boosting productivity by dramatically reducing both cost and time-to-market expenses (Devanbu

et al., 1996). With the emergence and advancement of Internet technology, the power of legacy

software systems is being unleashed toward a broader scope. Particularly, Web Services (WS)

have emerged as a new component-based software development paradigm in a network-centric

environment based on the Service Oriented Architecture (SOA) (Colan, 2004) as is illustrated in

Figure 1. By using standard XML as the description language and HTTP as the transport

protocol, WS can be used to wrap legacy software systems for integration beyond the enterprise

boundary across heterogeneous platforms. To be specific, WS uses the XML based XML-based

Web Services Description Language (WSDL) for specifying services, SOAP (Simple Object

Access Protocol) messages for service invocation, and UDDI (Universal Description, Discovery

and Integration) registry for service discovery (Colan, 2004). With the wrapping by WS, the

integration of legacy software systems is simplified, from one to one interoperation to

interoperate on the one common ground (WS).

Figure 1. Service Oriented Architecture (SOA)

! I~~Service Registration(D)

Service Requestor Service Provider

Approaches for Using Web Services as a Wrapper

There are several options for reengineering legacy software to WS:

Manually port original software source code to WS applications. This is an expensive

solution. Also WS code, such as WSDL, is verbose, and coding WSDL manually is error

prone.

Language tool based-in which the legacy software package is recompiled to generate

WSDL. Many tools such as AXIS', and the Microsoft .Net framework provide the

function of generating WSDL from implementation code (such as Java and C#) and vice

versa. Such tools leverage compiler technology to generate WSDL from other

programming languages. The WSDL in turn can be used to generate client side stub code

for the client to call the services exposed by legacy software systems (Graham, 2002).

However, this language tool based solution remains to be language-dependent. With the

variety of legacy software systems, a language neutral solution is required in order to

sufficiently handle the reengineering of legacy software systems to WS.

Cao, et al. (2004) used a model-driven approach to WS development. We build upon this

work by presenting a model-driven approach for reengineering legacy software systems to the

WS applications, in which a model plays a central role for migrating legacy software systems to

WS implementations. A model is usually represented in UML", or any other abundant domain

specific visual language (as can be seen in JVLC"'), which represents the structural and contextual

information of a legacy software system in a language neutral style without being tied to

implementation specifics. The model-driven reengineering approach is also based on the

observation that legacy software systems are usually documented in a visual modeling language;

models can also be used as first-class assets in SOA (e.g., model as the basis for service discovery

in Hausmann, et al., 2004).

To apply the model-driven approach for reengineering legacy software systems to WS, a

model should play a role beyond the conventional design and documentation capacity, i.e., a role

for WS code generation directly to resolve the manual porting problem as described above.

Usually UML-based code generation is based on a static mapping from the UML profile (Frankel,

2003), which lacks flexibility during code generation process. As such, we use Model

* IntegratedComputing (MIC) (L~deczi et al., 2001) for building a WS modeling environment and

consequently for WS code generation. MIC is essentially a development paradigm that offers a

means for creating a modeling language (meta-model), its associated modeling language

interpreter (generator). Then any domain-specific model built based on the modeling language

can be interpreted by traversing the model tree. The result of the interpretation process is the code

synthesized from the model. MIC has been widely used in middleware (Gokhale et al., 2004;

Edwards et al., 2004) and embedded systems (Karsai et al., 2003; Lddeczi et al., 2003).

Table 1. Comparison between MIC and programming language

MIC Programming Language

meta-model grammar

generator compiler/interpreter

application developed using the corresponding
domain-specific model

language

code synthesized in any chosen language intermediate code or native code

To ease the understanding of MIC, Table 1 provides an analog between MIC and

conventional programming language elements. Figure 2 provides an example of a meta-model of

Finite State Machine (FSM) and the corresponding model based on it.

While the meta-model (and in the later part the domain-specific modeling environment)

described in this paper is based on the notation of the Generic Modeling Environment (GME)

(ISIS, 2001) (as it is the only tool for the MIC paradigm so far), the same principle as shown in

this paper can be applied to other MIC-compliant modeling tools as well.

Figure 2. A simple example of meta-model and model
transition [, eigrr

non-end-2tate -- 'Connection- _ St ateDiagry
"-FCO>> d

0' condition field
strState: field

•] State2

StartState interSt.te EndS .ate

Finite State Machine (FSM) Meta-model Finite State Machine Model

Problems for Applying Model Integrated Computing (MIC)

to Reengineering Legacy Software to WS

While MIC offers an automatable and language neutral approach for reengineering legacy

software to WS, the starting point of MIC - the construction of the meta-model has to be a manual

process. Previous work on WS modeling (Cao et al., 2003) has revealed that with the increasing

complexity of the modeling target, the construction of the meta-model is subject to being ad-hoc

and error-prone. With the modeling assets (UML or other domain specific visual modeling

language) already abundantly available as part of the legacy software (which we term legacy

model), it is desirable to derive the meta-model from the legacy model in a systematic,

automatable process as opposed to being ad-hoc and error-prone. However, the current meta-

modeling languages lack adequate modularity support for large scale meta-model construction,

which nevertheless is widely existing in general programming languages. As a result, the

construction of a meta-model remains an art rather than a science.

* Therefore, this paper is composed of two major parts, each corresponding to the primary

contributions of this paper:

1) the elicitation of a meta-model from a legacy model in a systematic, automatable process,

which is addressed in Section 2 and Section 3, and consequently

2) the creation of a domain-specific WS modeling environment for WS code generation in

Section 4, as well as the treatment of WS semantic concerns from a model-driven

perspective in Section 5.

Related work is described in Section 6, followed by the conclusion and future work in Section 7.

MARSHALING AND UNMARSHALING MODELS USING THE ENTITY-

RELATIONSHIP (ER) MODEL

The elicitation of a meta-model from UML or other domain-specific modeling notations can

be done on a per source model basis. However, with the constant emergence of new modeling

notations, the elicitation approaches will become ad-hoc and not reusable. Moreover, there is a

need to converge the diversified modeling assets for modeling tool integrationiv. Therefore, we

need to encode the diversified models with a common representation, such that different

modeling notations can transfer to and from it, thus modeling assets can be exchanged and used

across different modeling tools. Cao et al. (2005) have referred to these modeling notation

transferals as marshaling and unmarshaling, respectively. The term marshaling comes from the

distributed computing scenario where heterogeneous data types are always translated into some

common data type over the network so as to be consumed at another end of the distributed

environment, where the common data type is unmarshaled again into another environment-

specific data type. Comparatively, the concept of marshaling and unmarshaling models refers to

transform a model to an intermediate common semantic form, which is reinterpreted in another

modeling environment/tool. This intermediate common semantic form is in a similar vein to

0 ACME (Garlan et al., 2000), which is an intermediate form for exchanging software architecture

description languages across different software architecture design tools. Moreover, with the

heterogeneity of models at different meta-level (not only model level but also meta-model level)

(Frankel, 2003), marshaling and unmarshaling of models can be performed at different levels:

horizontally, meta-model level and model-level; vertically, meta-model to/from model as is

illustrated in Figure 3.

Figure 3. Marshaling and unmarshaling models at different levels: the arrow represents
marshaling/unmarshaling process

m eta-rn o delI

Here we use the ER model (Chen, 1976) as the intermediate common semantic form for

marshaling and unmarshaling modelsv. The rationales are as follows:

- Sufficiency. Even though UML is widely adopted in software modeling, which seems to justify

the use of UML as a common model for exchanging model assets across modeling facilities,

UML is not convenient for model serialization, thus not fit for modeling asset exchange, reuse

and evolution. In fact, the object diagram (Booch et al., 1999), for which UML is used to capture

and store the snapshot of software system state, is represented virtually in an Entity (object) and

Relationship (links) model. Moreover, the UML modeling language has its roots in the ER model,

and the latter is already widely used as the foundation for CASE tools in software engineering

and repository systems in databasesi'.

- Necessity. As is illustrated in Figure 3, not only models, but also meta-models are in need of

marshaling and unmarshaling. Therefore, the intermediate model should be expressive enough to

, be at the meta-meta model level in the meta-level stack (Frankel, 2003). The meta-meta-model is

O described by the Meta Object Facility (MOF)vii, which is a set of constructs used to define meta-

models. The MOF constructs are the MOF class, the MOF attributes and the MOF association.

These constructs correspond to an ER representation (by using an Entity to represent a MOF

class), which indicates that the ER representation is semantically equivalent to MOF

fundamentally. Therefore, the ER representation is the right vehicle to play the dual roles of

marshaling both models and meta-models. Also, other non-UML based languages, even though

not as popular, are abundantly present, for which UML is not an omnipotent cure.

The scope of this paper is on vertical direction which is further illustrated in Figure 4, i.e.,

marshaling models to ER model, then unmarshaling ER model to the GME meta-model. The gray

area in Figure 4 represents the MIC paradigm. To be specific, in the following section, we will

marshal a UML class diagram for Web Services Description Language (WSDL) to the GME

meta-model, then create a WS modeling environment based on the meta-model for WS code

generation. Therefore, legacy software systems can be reengineered to the WS application

automatically with a language neutral approach. We also show the generality of this approach:

even though the scope is within the vertical direction, the approach can also be applied for

horizontal marshaling/unmarshaling using ER model; even though the source model is the UML

object-oriented model, it is not tied to this single kind of source model and can be applied to other

domain-specific visual modeling languages as well.

Figure 4. Eliciting Meta-models from model via marshaling and unmarshaling models using ER model

M3: ER Model
//• • 2.unmarshal

M2: 1. ms GME Meta- Model ' MI'C

Mu: Mo l domainsPecificmodel

reengineer
Legacy

Software: WS Application

O REENGINEERING LEGACY SOFTWARE TO WEB SERVICES (WS)

In order to reengineer legacy software to WS, we need to capture 1) the WS technology

domain knowledge; 2) the original legacy software business domain knowledge; and 3) original

implementation technology information. This categorization of technology domain knowledge

and business domain knowledge has been described by Zhao, et al. (2003).

Figure 5 is the class diagram of WSDL. The WS messages, which are either input or

output messages, are composed of parts, each of which corresponds to a specific data type. The

portType is an abstract WS interface definition, where each contained element, i.e., the operation,

defines an abstract method signature. The operation uses messages as its parameters. Binding

represents an instantiation to the abstract portType with concrete protocol and data type. Service

is a collection of ports, denoting a deployment of a binding at a specific network location.

Figure 5. The architecture of WS description elements

srice portType operation

1F, 1,

Figure 6 describes the legacy banking application information, including its business

domain knowledge (the first two paragraphs) and its original technology domain knowledge (the

last paragraph). Note as WS is used as wrapper for original technology domain knowledge

together with the business domain knowledge, rather than replacing the original technology, we

treat the original domain knowledge as the part of business domain knowledge in the remaining

part of the paper for simplicity purpose.

Figure 6. A banking example

A bank provides the service for users to set up accounts.

Account information includes personal data including Name, SSN,

phone number, address, and account data including Account Number,

PIN, Transaction Record, Balance. There are two types of

accounts: checking account and savings account.

For the bank side, it provides such services as: Account

Verification, Account Query, Deposit, Withdraw, and Transfer.

The banking service implementation may use such technology as

RMIviii, J2EEix, and CORBAX. Also it will enforce some Quality of

Service (QoS) requirements such as Availability, Dependability,

Capacity.

Marshaling Legacy Software Model to ER Model

In order to elicit the banking domain WS meta-model, we need to first merge the WS

technology domain information with the business domain information. To that end, we treat the

WS technology domain as the dominant domain during the merge process, with the business

domain knowledge as the adjunct domain being appended to the marshaled model from the

technology domain model. As such, the marshaling process as illustrated in Figure 4 can be

decomposed into the marshaling type A for dominant domain and type B for adjunct domain

together with a merge step as is illustrated in Figure 7.

Figure 7. Stepwise marshaling

P taIEu sine3 ss D omain-

• . • nowledge :"

0

* Table 2. Marshaling rules

Type Rule

"* aggregation, association, generalization,

Marshal A and dependency => Relationship

"* class=> Entity

Marshal B domain analysis and mapping

Table 2 illustrates the marshaling rules based on different marshaling types. Note that one of

the essential characteristics of a meta-model is that it treats not only the models, but also the inter-

relationships among models as first-class entities. Therefore, for marshal type A, the different

type of relationships between classes will be mapped to the Relationship construct in the ER

model, while each class is represented as an Entity. Figure 8 illustrates the resultant ER model

after marshaling the WS class diagram based on this rule. Each diamond represents a type of

relationship in the original class diagram. Note we ignore type in the ER model of Figure 5,

Figure 8. Marshaling WSDL model to ER model

service portType operation
II

I.. "• !

Sport •inding

iagnputgtio ou<as,

<m grgto eealzto soito

because we can put the type directly as the attribute of the part element. However we will not

include the attributes to the entities and relationships in the ER representation here, as the focus

of this paper is about the model of marshaling and unmarshaling structurally; the attributes will

be annotated in the GME meta-model and are shown later.

For marshal type B, a domain analysis phase (Czarnecki & Eisenecker, 2000) is needed to

associate the business domain information to the technology domain information. Specifically,

the different banking services described in Figure 6 can be treated as different types of

operations in WSDL, while different banking service implementation technology and QoS

requirements can be associated to bindings in WSDL as a reification of operations. Account

information and account type information can be treated as messages in WSDL. Figure 9

illustrates in detail the resultant ER model after annotating the business domain knowledge (using

either generation relationship or association relationship) to the WSDL ER model illustrated in

Figure 8. By using the ER model as the intermediate form for marshaling, different types of

Figure 9. The ER model of Banking Service WSDL: the three parts enclosed with dashed line represent the
extended part to the WSDL model.

L------,sericputt p o upurtion

por bidn chnseknravnl
RI RE CR

L.------------

0 <0 aggregation generalization association

domain knowledge can be merged incrementally without obfuscating each other, which provides

a separation of concerns toward domain-specific model refinement. Also with the non-invasive

merge process, the business domain semantics are reified with technology semantics while the

business domain semantics are kept unchanged.

Just as the compiler can apply code optimization when compiling application code, the

marshaling process can be used to apply optimization (e.g., reduce redundant models or

relationships) for the original modeling language (either UML or domain specific), the detailed

discussion of which is out of the scope of this paper.

Unmarshaling ER Model to GME Meta-model

In the GME meta-model, the containment relationship is represented by using a model

element (stereotyped with <<model>>), which, in contrast to an atom element (stereotyped with

<<atom>>), can contain other modeling elements. Also the contained elements can be promoted

as ports of the model to have direct connections with external modeling elements.

Additionally, GME uses a root model as an entry point of access to all the modeling elements.

Also, the relationship of ER is represented in GME as a first-class modeling element, connection

(stereotyped with <<connection>>), with a connector in the form of a dot to associate this

relationship with two modeling elements (entities).

The unmarshaling from the ER model to the GME meta-model is based on the relationships in

the ER representation, as is illustrated in Table 3.

1) A contains B. In this case, A can be modeled as a model element in GME containing B.

2) B is specialized from A. In this case, A is rendered by an abstract FCO (First Class Object,

tagged with <<FCO>>, represents an abstract generalization of other modeling constructs), a

modeling element to be used as an abstract interface in GME, and B is represented as an inherited

class of that FCO. Note there are two special treatments here: first, for the input/output elements

. Table 3. The Unmarshaling Rules: the relation notation is consistent with that in Figure 8

Rule Number Relationship type GME Metamodel element

A
.- Model-

Sf0...

B

c5Ato>- +
A

_Atm

3 --

of Figure 9, they are only used to tag the connection (named either "input" or "output") between

message entities and its interconnecting entities in GME; second, the generalization relationship

between binding and portType is actually treated as an association when modeling in GME,

because the binding entity actually attaches values of the chosen protocol to the portType in

WSDL rather than in the real sense of inheritance.

3) B is associated to A. In this case, a connection can be added to be associated with the A and B

representations in GME. The connection element can be named with respect to A's or B's

properties as a kind of tag, e.g., the tag can be named as the combination of both A's name and

B's name. Note when the situation as described in case 2 applies, then this tag should be named

as in case 2.

0

Figure 10. The meta-model of banking domain WSDL in GME

Root

r bindo ng ... -Cn n~ec tin>

parut -• V_ -- FT0 I
-F O> Adaptability : __e 0..

9 11 Availability: fie d DateDeployed field g ...

op rai ons C apai tyli l D i l M aintain ability : field _1 V ersion : field Jb n i g p l"d 0-C >> Portability : field I.. {C neto>
%q.,,,,,• oupu: field1 Security: field I

I • ~ ~~ Throughput : field I= b, i,
Bak~co 'n % I Turn-around-time :fielc

anAccount~u r fieleld

ddress----: field Pin field k•rb .m oJ

p h n f e d B a la n c e : fi e ld ,% A t

[88N: field

interestrat field

Figure 10 shows the meta-model created by unmarshaling the ER model in Figure 9 strictly

O observing the above unmarshaling rules. The seven boxes with bold borders correspond to the

seven WSDL entities in Figure 8 and 9, with WebService corresponds to the service entity. The

boxes in Figure 10 also contain attributes for the related models to be instantiated in the modeling

phase. The four areas designated by four bold dashed circular lines correspond (from right to left)

to the extension parts 1-4 in Figure 10. It can be seen from Figure 10 that the meta-modeling

language lacks the modularity that programming languages have, thus the construction process of

a complex meta-model is error-prone without a systematic, automatable treatment.

THE WS MODELING ENVIRONMENT

After a meta-model is derived by marshaling and unmnarshaling models, a domain specific

modeling environment (which is also a crucial part of MIC) can be created based upon the meta-

model, as is indicated in Table 1. Figure I11 shows the screenshot of the banking-domain WS

O ~ modeling environment based on the meta-model illustrated in Figure 10. The lower-left corner

provides the modeling elements that can be dragged and dropped in the upper-left pane for

Figure 11. The banking domain-specific WS modeling environment

-- d

•}: . =• J2EE San ldngSer mices r

Sp2 Corbe RMIGoS~arammttrr

pob 2E CoS~rbame Oo RaMI messg

port po-r t-'<,"- ,TS•:'ype¢•',:'••

*1 ta>.

jcKr F

constructing a banking service model. The names of the models in the lower-left pane represent

the meta-model names (kind names); when those models are dragged to the above pane, the

model name can be changed to reflect the meaning of the model in the domain-specific context,

which we call a context name. Furthermore, the domain-specific model can be traversed based on

the meta-model and interpreted in terms of code generation using the GME Builder Object

Network (BON) framework (ISIS, 2001), which is illustrated in Figure 12. For saving space,

Figure 12 only shows the interpreter code for generating message and portType of WSDL. Other

part of WSDL can be generated in a similar way. The WSDL code generated for the banking

service embedded with QoS parameter extension is shown in Figure 13. Because of the limited

space, only a snippet of the generated WSDL code is shown in Figure 13. Notice the bold-font

part of the following WSDL code includes the QoS and ontology attributes of WSDL, which may

be used for WS filtering if QoS requirements or domain specific requirements are include for

service discovery.

Figure 12. WSDL code synthesis using GME BON AP1

const CBuilderModelList *root = builder.GetRootFolder()->GetRootModels();

POSITION pos = root->GetHeadPositionf);
ASSERT(pos->GetCount()==l); //to ensure this model is representing just one WSDL

CBuilderModel *webserv = pos->GetHeado; //get the handle to the WebService model
ASSERT(webserv->GetKindName()=="WebService");

//WSDL message part
const CBuilderAtomList *messages = webserv->GetModels("message");
pos=messages->GetHeadPosition();
CBuilderAtom *oneMessage;
while(pos)

/.
traverse each message model and generating code
<message>... </message>
for each message model

*/

oneMessage=messages->GetNext (pos);
const CBuilderAtomList *accounts =oneMessage->GetAtoms("PersonalAccount");

//WSDL portType part
const CBuilderAtomList *portType = webserv->GetModels("portType");
pos=portType->GetHeadPosition();
ASSERT(pos->GetCount()==l); //to ensure only one portType element in WSDL
CBuilderAtom *oneportType;
oneportType=portType->GetNext(pos);

Figure 13. The WSDL for a banking WS

<message name="checking">
<part name="user ident" type="identity"/>
<part name="pl" type="checking"/>

</message> <binding name="J2EEBanking"
<message name="savings"> type="BankingServices">
<part name="userident" type="identity"/> <soap:binding style="J2EE" transport="http"
<part name="pl" type="savings"/> QoS:portability="0.544400">

</message>
<message name="checking savings"> </binding>
<part name="user ident" type="identity"/> <binding name="CORBABanking"
<part name="pl" type="checking"/> type="BankingServices">
<part name="p2" type="savings"/> <soap:binding style="CORBA" transport="IIOP"

</message> QoS:turn-around-time="10.35">

<portType name="BankingServices"> /binding>
<operation name="w" <binding>

ontology="Banking:withdraw"> type="BankingServices">

<input message="checking"/> <soap:binding style="RMI" transport="http"
<output message=""/> QoS:dependability="0.34">

</operation>
<operation name="d"

ontology="Banking:deposit"> /binding>

<input message="checking"/> <service name="My Bank">
<output message="-/> <port name="pl" binding="J2EEBanking">

</operation> <soap:address location="URLl"/>
<operation name="v" </port>

ontology="Banking:deposit"> <port name="p2" binding="CORBA_Banking">
<input message="checkingsavings"/> <soap:address location="URL2"/>
<output message="'"/> </port>

</operation> <port name="p3" binding="RMIBanking">
<operation name="q" OntOlOgy="Banking:query"> <soap:address location="URL3"/>

<input message="savings"/> </port>
<output message=""/> </service>

</operation>

</portType> (to be continued in the right pane)

O MODEL-DRIVEN APPROACH TO ENRICH WS SEMANTICS

Current WS standards mainly embrace the semantics of processes at the collaborating

syntactic interface level. WSDL only exposes distributed object services, while such process

behavior aspects as ordering, and dependency are not well specified in the existing WSDL

standard. The model-driven approach can play a unique role in enriching the WS semantics:

OCL (Object Constraint Language)xi to enrich WS semantics at a high level

OCL is used to complement the semantic representation for UML. Likewise, when the

model is used to represent WS, OCL can be used to enrich WS semantics indirectly at a

higher level. For example, if we add into the banking case in Figure 6 such requirement

that "deposit and withdraw can only be applied to checking account", the specified

constraints over withdraw and deposit operations can be enforced in GME using the

following MCL expression (ISIS, 2001), an OCL implementation in GME:

connectedFCOs("src")->forAll(clc. kindNameo="checking")

Those constraints apply to both the withdraw atom and the deposit atom in Figure 10,

which means those First Class Objects (referring to both entities and relations in GME)

that are connected with withdraw/deposit atoms are all of kind "checking".

Therefore, in the WS modeling environment as shown in Figure 11, once a modeling

entity of type other than "checking" is connected to withdraw/deposit, an error message

window will pop up.

* Meta-model as Ontology

A valid meta-model is an ontology, but not all ontologies are modeled explicitly as meta-

models (Ernst, 2002). This ideal has already been used in (Hausmann et al., 2004) for

WS discovery. Comparatively, here we just output the meta-model information into the

generated WSDL as ontology annotation to enrich the WSDL semantic representation.

* Creating modeling language for enriching WS semantics

0 Assume there is order restriction for those banking operations described in Figure 6: both

transfer and withdraw have to be preceded by a query operation; the account verification

comes after each of the other operations. Such models as Finite State Machine (FSM) can

be used to enrich WS semantics. Based on the FSM meta-model in Figure 2, a FSM

modeling environment can be created in addition to the WS modeling environment that is

described in Section 4, which can be used to generate operation ordering constraint code

to be embedded in WSDL. We skip the details here due to space limitations.

RELATED WORK

This paper presents both a novel model-driven approach in general and its novel application

to WS in particular. Specifically:

1) For the model-driven approach aspect, we use ER model for marshaling and unmarshaling

0 models. The related work in this regard includes:

MDA

MDAxII is an initiative from OMGxiii for capturing the essence of a software system in a

manner that is independent of the underlying implementation platform. MDA can assist

in reengineering legacy software systems into Platform Independent Models (PIMs). A

PIM can be mapped to software components on Platform Specific Models (PSMs), such

as CORBA, J2EE or .NET. In this way, legacy systems can be reintegrated into new

platforms efficiently and cost-effectively (Frankel, 2003). However, the core part of

mapping technology for MDA is either ad-hoc or pre-mature before MDA can be fully

adopted in industry. ER-based model marshaling and unmarshaling offers a potential

solution to address this problem systematically. Another difference is that in MDA, the

PIM is treated as dominant model while here we treat the technology domain as dominant

model, with business domain knowledge (PIM) as adjunct model in Section 3.

It has been observed that the ER representation has been adopted in defining the

Knowledge Discovery Meta-Model (KDM)xiv and Ontology Definition Meta-Model

(ODM)x" in OMG, which underscores the role that ER plays for model marshaling and

unmarshaling.

"* Grammar Inference

The ER model, because of its powerful modeling capacity, can be used as an intermediate

form for model-to-model and meta-model-to-meta-model exchange. Because of the dual

role that the ER model can play, it is treated as an intermediate form for model-to-meta-

model elicitation, which is the theme of this paper. This idea is very similar to grammar

inference (Higuera, 2001), where a grammar can be inferred from language examples.

But the two approaches are applied at different abstraction levels.

" XMI

Y XMIXVi provides a standard mapping from MOF-based models to XML, which can be

exchanged between software applications and tools, and the XMI specification is difficult

to read by humans. In contrast, ER-based model marshaling and unmarshaling represents

a design-level approach for evolving design assets, without being restricted to low-level

syntactical data representation specifics, and the ER representation is much more human

comprehensible. Also, the XMI-based approach uses top-down mapping, and is coupled

to the meta-model of the targeted language; interchange format cannot be changed

without changing the meta-model. In contrast, the ER-based approach represents either

horizontal mapping or bottom-up mapping as is illustrated in Figure 3, without being tied

to any meta-model.

2) We applied the model-driven approach to WS, specifically, MIC for WS code generation

automatically; Model-driven approaches for enriching WS semantics are also identified. The

* related work in this regard is as follows:

In Lopes and Hammoudi (2003), MDA is used together with workflow technology for

modeling and composing WS. But the authors do not provide a guideline as to how to create the

meta-models. Also the mapping from PIM to PSM is not detailed. In contrast, our meta-modeling

approach is sufficiently complete and general as to be applicable to other aspects of WS such as WS

orchestration code generation. Sivashanmugam (2003) describes an approach of adding semantics

to WS by adding ontology attributes to both WSDL and UDDI, which includes pre-condition and

effect specification. We applied ontology annotation to WS as well, and we put the pre-condition

and other effect specification at the meta-model level. In Mantell (2003), an MDA approach is

used for BPEL4WS"Vi code generation from a UML design. This approach uses XMI processing

technology for UML model exchange. Comparatively, the XML representation for the ER model is

much simpler and easier to process in our approach. Code generation in Mantell (2003) is based on

the UML profile mapping, which is not as flexible as a generator-based approach in our case.

The UniFrame project (Raje et al., 2002; Olson et al., 2004), has a more comprehensive

application of the model-driven approach. UniFrame aims at creating a framework for seamless

integration of distributed heterogeneous components. In UniFrame, the model-driven approach is

applied for domain engineering, and for creation of Generative Domain Models (GDMs)

(Czamecki and Eisenecker, 2000), which are used for eliciting rules to generate glue/wrapper code

for assembling distributed heterogeneous components. In contrast, the scope of glue/wrapper code

generated here is specific to WS code, which has not been addressed by UniFrame.

CONCLUSION AND FUTURE WORK

With Web Services (WS) as a wrapper, legacy software systems can be reused and

integrated beyond enterprise boundaries across heterogeneous platforms. This paper explores in

detail a model-driven approach to reengineer legacy software system to WS applications using a

* systematic, automatable process, which includes: 1) the meta-modeling process using ER-based

marshaling and unmarshalifig, 2) the construction of a WS modeling environment for generating

WS code and enriching WS semantics. To our best knowledge, there is no peer work that

addresses either systematic meta-model construction, or sufficient model-based WS code

generation, while our work represents a comprehensive solution to both issues. Even though the

work presented in this paper is specific to WS development, the approach can be applied to other

web system engineering by reengineering to a different meta-model other than the WS meta-

model.

Future work will be to provide tool support for part I in the preceding paragraph to

automate the model marshaling and unmarshaling process for seamlessly integrating the

reengineering process to MIC paradigm. For part 2, we will enrich the WS modeling environment

by providing modeling and code generation support to other behavior concerns of WS such as

interaction, activity, and temporal relationship, as well as WS orchestration and adaptation.

. ACKNOWLEDGEMENTS

This research is supported in part by the U. S. Office of Naval Research under the award number

N00014-01-1-0746.

REFERENCES

Booch, G., Rumbaugh, J. & Jacobson, I.(1999). The Unified Modeling Language User Guide.
Addison-Wesley.

Cao, F., Bryant, B. R., Burt, C., Gray, J., Raje, R., Olson, A., & Auguston, M. (2003). Modeling
Web Services: toward system integration in UniFrame. Proceedings of 7th World Conference
on Integrated Design and Process Technology (IDPT'03).

Cao, F., Bryant, B. R., Zhao, W., Burt, C., Gray, J., Raje, R., Olson, A., & Auguston, M. (2004).
A Meta-modeling approach to Web Services. Proceedings of 2004 IEEE International
Conference on Web Services (ICWS 2004).

Cao, F., Bryant, B. R., Zhao, W., Burt, C., Gray, J., Raje, R., Olson, A., & Auguston, M. (2005).
Marshaling and unmarshaling models using Entity-Relationship model. Proceedings of the 20th

*Annual A CMSymposium on Applied Computing (SAC 2005).

O Chen, P. P. (1976). The Entity-Relationship model: toward a unified view of data. ACM
Transactions on Database Systems, 1(]), 9-36.

Colan, M. (2004) Service-oriented architecture expands the vision of Web Services. http://www-
106.ibm.com/developerworks/webservices/library/ws-soaintro.html.

Czarnecki, K., & Eisenecker, U.W. (2000). Generative Programming: Methods, Tools, and
Applications. Addison Wesley.

Devanbu, P., Karstu, S., Melo, W., & Thomas, W. (1996). Analytical and empirical evaluation of
software reuse metrics. Proceedings of 18th International Conference on Software Engineering
(ICSE '96).

Edwards, G. T., Deng, G., Schmidt, D. C., Gokhale, A. S., & Natarajan, B. (2004). Model-driven
configuration and deployment of component middleware publish/subscribe services.
Proceedings of 3rd international Conference on Generative Programming and Component
Engineering (GPCE 2004).

Ernst, J. (2002). What are the differences between a vocabulary, a taxonomy, a thesaurus, an
ontology, and a meta-model?
http://www.metamodel.com/article.php?story=20030115211223271.

Frankel , D. S. (2003). Model Driven Architecture: Applying MDA to Enterprise Computing.
Wiley.

Garlan, D., Monroe,R. T., & Wile, D. (2000). Acme: architectural description of component-
based Systems. Foundations of Component-Based Systems, ed. Leavens, G. T. and Sitaraman,
M., Cambridge University Press, 47-68.

Gokhale, A., Schmidt, D. C., Natarajan, B., Gray, J., & Wang, N. (2004) Model driven
middleware. Middleware for Communications, ed. Mahmoud, Q., John Wiley and Sons, 163-
187.

Graham, S., Simeonov, S., Boubez, T., Davis, D., Daniels, G., Nakamura, Y. & Neyama, R.
(2002). Building Web Services with Java. SAMS.

Hausmann, J. H., Heckel, R., & Lohmann, M. (2004). Model-based discovery of Web Services.
Proceedings of International Conference on Web Services (ICWS 2004).

Higuera, C. d. 1. (2000). Current trends in grammatical inference. Proceedings of Joint IAPR Int.
Workshops SSPR & SPR 2000.

ISIS.(200 I). GME 2000 User's Manual, Version 2.0. Vanderbilt University.

Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T. (2003). Model-integrated development of
embedded software. IEEE. 91(1), 145-164.

L6deczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., & Karsai, G. (2001).
Composing domain-specific design environments. IEEE Computer, 34(11), 44-51.

. LUdeczi, A., Davis, J., Neema, S., Agrawal, A. (2003). Modeling methodology for Integrated
simulation of embedded systems, ACM Transactions on Modeling and Computer Simulation.

13(1), 82-103.

Lopes, D., & Hammoudi, S. (2003). Web service in the context of MDA. Proceedings of

International Conference on Web Services (ICWS'03).

Mantell, K. (2003). From UML to BPEL: model driven architecture in a Web Services world.

http://www- 106.ibm.com/developerworks/webservices/library/ws-uml2bpel/.

Olson, A. M., Raje, R. R., Bryant, B. R., Burt, C. C., & Auguston, M. (2004). UniFrame-a unified
framework for developing service-oriented, component-based, distributed software systems.
Service-Oriented Software System Engineering: Challenges and Practices, ed. Stojanovic, Z. and
Dahanayake, A., Idea Group, 68-87.

Raje, R. R., Auguston, M, Bryant, B. R., Olson, A. M., Burt, & C. C. (2002). A quality of service-

based framework for creating distributed heterogeneous software components. Concurrency and
Computation: Practice and Experience, 14(12), 1009-1034.

Sivashanmugam, K., Verma, K., Sheth, A., & Miller, J. (2003). Adding Semantics to Web Services
Standards. Proceedings of International Conference on Web Services (ICWS'03).

Zhao, W., Bryant, B. R., Burt , C. C., Gray, J. G., Raje, R. R., Olson, A. M., & Auguston,
M.(2003). A generative and model driven framework for automated software product
generation. Proceedings of CBSE 6, the 6 h Workshop on Component-Based Software
Engineering: Automated Reasoning and Prediction.

http://ws.apache.org/axis/
ii UMLTM - Unified Modeling Language - http://www.omg.org/uml

JVLC - Journal of Visual Languages and Computing-http://www.elsevier. com/locate/jvlc
Interview with Keith Short, http://www.theserverside.net/talks/ library.tss#KeithShort
Note that the ER model is not intended to replace the existing modeling language such as UML or Petri
Nets - those modeling languages have their own advanced features for a specific domain to model. Here
the ER model is chosen as an intermediate form only for exchanging models of a close type or serving a
close purpose but with variant notations across different modeling tools and environments.
http://bit.csc.lsu.edu/-chen/chen.html

v" Meta-Object Facility - http://www.omg.org/technology/documents/formal/mof.htm
"VIIi RMI - Remote Method Invocation: http://java.sun.com/products/jdk/rmi/index.jsp
"iX J2EE - Java 2 Enterprise Edition: http://java.sun.com/j2ee/
SCORBA® - Common Object Request Broker Architecture: http://www.omg.org/corba/
"I.bhttp://www-3.ibm.com/softwarelad/library/standards/ocl.html
XII MDA - Model-Driven Architecture - http://www.omg.org/mda

0iii OMG - Object Management Group -http://www.omg.org/
http://www.omg.org/cgi-bin/doc?lt/2003-11-4

"XV.http://codip.grci.com/odm/draft/submissiontext/ODMPrelimSubAugO4R 1.pdf
"'V, XMI - XML Metadata Interchange - http://www.omg.org/technology/ documents/formal/xmi.htm
Xvii BPEL4WS - Business Process Execution Language for Web Services - http://www-128.ibm.com/

developerworks/library/specification/ws-bpel

A Non-Invasive Approach to Assertive and Autonomous
Dynamic Component Composition in Service-Oriented

Paradigm

Fei Cao
(University of Alabama at Birmingham, Birmingham, AL, USA

caof@cis.uab.edu)

Barrett R. Bryant
(University of Alabama at Birmingham, Birmingham, AL, USA

bryant@cis.uab.edu)

Rajeev R. Raje
(Indiana University Purdue University, Indianapolis, IN, USA

rraje@cs.iupui.edu)

Andrew M. Olson
(Indiana University Purdue University, Indianapolis, IN, USA

aolson@cs.iupui.edu)

Mikhail Auguston
(Naval Postgraduate School, Monterey, CA, USA

auguston@cs.nps.navy.mil)

Wei Zhao
(University of Alabama at Birmingham, Birmingham, AL, USA

zhaow@cis.uab.edu)

Carol C. Burt
(University of Alabama at Birmingham, Birmingham, AL, USA

cburt@cis.uab.edu)

Abstract: Component-based software composition offers a development paradigm with
reduced time-to-market and cost while achieving enhanced productivity, quality and
maintainability. Existent work on the composition paradigm are of a static composition
paradigm, which is not sufficient in distributed environment, in which both constituent
components and assembled distributed system are subject to dynamic adaptation. This paper
presents two types of dynamic composition for distributed components: assertive and
autonomous over .NET based Web Services environment. Two case studies are provided: the
first one illustrates at a low level how the underlying infrastructure enables the dynamic
composition; the second one illustrates at a high level how dynamic compositions are specified.

Keywords: dynamic component composition, Service Oriented Architecture, Web Services,
assertive composition, autonomous composition, intermediate code manipulation, aspect-
oriented programming, aspect weaving, .NET, Common Language Runtime
Categories: D.2.3, D.2.12, D.2.13, D.2.7, D.3.3, H.3.5, 1.2.8

0

1 Introduction

With the increasing demand for scalability, reasonability and correctness of software
systems, software development has evolved into a process of composing existing
software components, as opposed to constructing a new software system completely
from scratch [Heineman, 01]. Economically, by reducing time-to-market, this
approach has improved the economic and productivity factors of software production
[Devanbu, 96]; Technically, by separating overall functionality into small units,
component-based software development also offers a means for better manageability
[Brown, 00] and predictability [Hissam, 03] of the constructed software system.

Features of Distributed Components
With the advancement of internet technology, component-based software

development has unleashed its impact into the distributed environment, while
exhibiting such new features as follows:

a. The scope of component selection and reuse is extended. Consequently,
component composition requires a prerequisite discovery process for
identifying a matching component.

b. Distributed components are usually heterogeneous with respect to
implementation languages, and host platforms. With different type systems
or component models, interoperation between components will not be
possible without leveraging proper bridging technology.

c. Because of the unpredictability of network transport, not only functional
properties, but also non-functional properties (e.g., Quality of Service [Raje,
02], economical properties such as pricing of service) are of critical concern
to guarantee the proper delivery of services offered by the assembled
distributed software systems. QoS includes availability, throughput, and
access control, to name a few.

d. The coupling between components is loose. A deployed component in a
distributed system is subject to frequent adaptation' or replacement with a
new version to accommodate ever-changing business requirements
externally as well as the computing resource status internally. Those
requirements can be either functional or non-functional.

WS as a New Paradigm for Distributed Component Composition
Those new features pose new problems for developing software systems based on

distributed components. Recent years have seen the emergence of Web Services (WS)
technology as a new component-based software development paradigm in a network-
centric environment based on the Service Oriented Architecture (SOA) [Colan, 04],
the open standard description language XML and transportation protocol HTTP.
Consequently, distributed component composition can be achieved by wrapping
heterogeneous components with a WS layer for interoperation. Using WS as a
common communication vehicle, component interoperation is greatly simplified

SHere adaptation is defined as component compositon and decomposition;
component composition and decomposition are the means to realize adaptation.

0

compared with such bridging technology as CORBA , where different interoperation
implementations are needed for each pair of components contingent on their
underlying implementation technologies. In the remaining part of this paper, the term
component in a distributed environment is equivalent to a WS: we use it to correlate
the canonical concept of a software component [Szyperski, 02].

The Need of a Dynamic Component Composition Paradigm in WS
In addition to offering an interoperability infrastructure for distributed

components, WS also incorporates service discovery infrastructure in accordance with
SOA. With problem (a) and (b) being embraced, current WS technology is yet to
address the concerns as set forth in (c) and (d). Specifically,
1). in mission critical scenarios such as finance or military, there is a need for

guarantee of service availability continuously, rather than shutting down the
system for services adaptation;

2). in distributed environments, service consumption experiences are dynamic and
desirable to be seamless, thus the customizability of service dynamically is of
vital importance in a service-oriented environment.

As such, static component composition is not adequate, and both functional and non-
functional property adaptation need to be applied in a dynamic fashion. Along this
line, this paper presents a dynamic component composition paradigm in WS
environment for adapting WS functionally and non-functionally while maintaining the
availability of WS.

This paper presents a dynamic component composition paradigm based on the
.NET Common Language Runtime (CLR) [Gough, 02]. We chose .NET because it is
a thorough, fundamental re-architecting of a distributed computing platform based on
WS, while other application server support for Web Services tend to be designed
more as another client, or presentation tier for the back-end systems, with
communication tier based on RMI or RMI/IIOP rather than a strictly XML protocol
based such as .NET [Newcomer, 02].

This paper is organized as follows: Section 2 describes background
information. Section 3 provides an overview of the approach, as well as salient
features. Section 4 describes design and implementation. Section 5 provides two case
studies. Section 6 provides the benchmarking for the approach. Section 7 describes
related work. We conclude in Section 8 together with the description of future work.

2 Background

The .NET framework is a platform for software integration, with Common Language
Runtime (CLR) for integrating software at the single operating system process scale,
and with XML WS for integration at the internet scale. CLR is the .NET equivalent to
the Java virtual machine, but offers more features such as using Common
Intermediate Language (CIL) based on the Common Type System (CTS) [Gough, 02]
to translate .NET languages before execution, thereby offering cross-language
interoperability for .NET languages based on CIL. The code to be translated into CIL

2 CORBA® - Common Object Request Broker Architecture:

http://www.omg.org/corba/

and then to be executed by CLR is also called managed code. Also CIL includes rich
metadata information for describing software module contracts to achieve managed
execution, with the benefits of security and scalability.

The scope of this paper is not to at provide a full description of .NET CLR and
XML WS, but rather to present our approach on capturing WS at the CLR level, then
applying in-memory CIL code manipulation at runtime to realize dynamic component
composition.

3 Overview of the Approach

3.1 Runtime Code Manipulation Through Assertive and Autonomous
Composition Rules

Figure 1 provides an overview of the dynamic composition approach. In the left pane
of the execution unit, the .NET XML WS, which is specified with Web Service
Description Language (WSDL), is a layer built on top of .NET applications (1), which
in turn runs over CLR (2). Consequently, .NET based XML WS can leverage the
benefits of managed execution, where the .NET application is captured in the form of
CIL (2), which is to be Just-In-Time (JIT) compiled into native code and executed (3).
Therefore, by manipulating CIL derived from the XML WS implementation
language, WS components can be composed at runtime.

C

S. .

ý0 wsIvsD, "" i2 <

.NET Application c I

2 Composition Rule

CLRICOL

13

Native Code]

Execution Unit Configuration Unit

Figure 1: Overview of the dynamic composition approach

0

The manipulation of CIL is illustrated in the right pane of the configuration unit,
which is comprised of a stack of composition rules with a meta-level hierarchy.
Composition rules are specifications for component composition (d). Meta-rules are
specifications of triggering conditions for applying the composition rules, and the
firing of the composition rules is enabled through a rule execution engine
automatically (c). The use of rule engine for applying composition rules is useful for
implementing autonomous compositions based on the runtime status quo. The actor
icon represents a configuration console in a manual manner for both meta-rules (a)
and composition rules (b). While the composition enabled through path (a->c->d)
represents autonomous composition, the composition path of (b->d) represents the
assertive composition. The configuration decision is based on WSDL exposed by WS
(il); WS itself can in turn assume the configuration role for specifying component
composition reactively (i2).

3.2 Salient Features

The dynamic component composition approach also includes the following salient
features:

1). Non-invasive
w Non-invasive to application code for separation of composition concerns
The WS composition is realized through in-memory IL manipulation as
opposed to off-line invasive code change. The non-invasive change is often
desirable as a WS vendor may deliver the software package in binary form.
Also even though it is possible to derive CIL from a .NET executable using
some de-compilation tools, invasively changing either original source code
or derived CIL code will require unloading, recompiling and redeployment
of the original WS application, which compromises the availability of WS.
Moreover, the invasive change of WS code will pollute the original
application such that recovering it will become difficult, which introduces
the common version control problems for software systems.
w Non-invasive to platform for portability. The composition through
manipulation of CIL at runtime (Figure 1-d) requires the interception of the
managed execution. Instead of re-implementing the CLR such as rewriting
open source CLR Rotor [Stutz, 03] to invasively add a listener for execution
interception at the compromise of portability of CLR, we use a pluggable,
configurable CLR profiling interface to achieve this goal, which can be
enabled and disabled based on composition needs with ease to reduce
unnecessary overhead.

2). Language neutral for cross-language component composition
By specifying composition rules based on WSDL, which in turn is based on
alanguage neutral XML schema3, and code manipulation at the intermediate
code (CIL) level based on language neutral CTS, WS components
implemented in different .NET languages can be composed across language
boundaries.

3). Adaptable composition.

3 http://www.w3c.org/2001/XMLSchema

0 With the configuration unit as a separate entity applied to runtime as shown
in Figure 1, not only is the composition concern separated, but also it can be
updated to realize adaptable composition at runtime.

The following section presents in detail the design and implementation of the
dynamic component composition in Peer-to-Peer (P2P) scenarios, particularly, how
the composition rules are specified to facilitate assertive and autonomous
configuration.

4. The Design and Implementation of Dynamic Component
Composition

4.1 Peer-to-Peer (P2P) Component Composition

Figure 2 illustrates the architecture for the dynamic component composition based on
.NET WS environment. In our work, each component is hosted in an infrastructure
DynaCom, which is essentially a profiler-enabled CLR to be detailed in Section 4.2.
DynaCom is used as a proxy to for components to interoperate with components in
other locations through WS. Meanwhile, DynaCom can intercept the execution of the
hosting components and change the behaviour of the executing components
dynamically. DynaCom is based on our prior work on using a profiling approach for
dynamic service provisioning [Cao-a, 05], but here it is tailored to component
composition.

0

in tern

DynaCoA-

conmponent profiler-enabled CLR

Figure 2: The P2P component compositions in .NET WS environment

0

The component composition model shown in Figure 2 represents a P2P paradigm,
which is the primary composition model to be addressed in this paper. This choice is
based on the observations that P2P and dynamic composition are tightly associated:
1). P2P as an agile mode to accommodate dynamic features. While WS

orchestration by executing BPEL4WS 4 in the execution engine represents a
centralized composition model, it has been observed that such a composition
model compromises scalability, availability, and security for the server [Chen,
01]. With the highly dynamic features in distributed environment, P2P
component composition paradigm will be more widely used.

2). Dynamic composition is the necessary means for realizing P2P computation in a
distributed environment. While component composition usually requires the
generation of glue/wrapper code [Cao, 02), the physical location for hosting the
generated glue/wrapper code is a hard problem in P2P mode without central
management and storage units. Dynamic composition, with glue/wrapper code
generated in memory and JIT compiled and executed at runtime, provides a
solution for P2P component composition without the physical code placement
issues.

4.2 DynaCom Exposed

Figure 3 provides an anatomy of DynaCom. The part enclosed by the big square
represents the enabling mechanism for dynamic composition, which is transparent to
the components to be composed above the big square.

Our work is built upon the ASP.NET5, a WS implementation package based on
the .NET framework. In ASP.NET, Internet Information Service (IIS) 6 is used to
accept the incoming WS SOAP (Simple Object Access Protocol) [Newcomer, 02]
message transported over HTTP (1). Upon acceptance of the WS request encoded as a
SOAP message, an IIS filter will launch a work process (aspnet wp.exe), which in
turn will launch CLR (2) to run the WS application in the mode of managed
execution. At this point, the WS application is rendered as in CIL subject to be
JITcompiled into native code and executed (6). In order to adapt WS, it is needed to
intercept the WS call at the CIL level before it is compiled. While it is reasonable to
implement the expected functionalities in the CLR open source of millions of lines of
code such as Rotor [Stutz, 03], we feel it too expensive an effort. Instead, we use the
CLR profiling API to implement a Profiler as event handlers, and register them as
listeners for the events generated from the CLR (3). In contrast to the conventional
publisher/listener model, which is often of a client-server relationship, the profiler
here will be mapped into the same address space for the profiled application as an in-
process server.

4 BPEL4WS - Business Process Execution Language for Web Services - http://www-
128.ibm.com/developerworks /library /specification/ws-bpel
5 http://asp.net
6 http://www.microsoft.com/WindowsServer2003/iis/default.mspx

0

eComponent 2 2

E5 =10. 1 1" 12 % I

/ponet 1 -,N"

Figuernet 3:nheorchitioectrer ofDyaISDnai Copnntcmosto enalin0!

Rule Base

2 Adaptation Advicr nderte Eng acs
Repository (AAR)

T a iblet Advice Usage w 11

Specificationm.

Just-in-Time Compil fro m -i t CL a e5 app •.

Common Language Runtime Avc irr

Native Code Execution g/

sFigure 3: The Architecture of DynaCom: Dynamic Component composition enabling
unit, which includes the part enclosed by a bold-border rectangular and the IS, facts.
The parts ofllS andfacts are accessible to the remote components, while the enclosed
part of DynaCom are only accessible locally. The dashed line of I and 10 represents
remote access, while imposremaining solid lines represent local access. The laptop
icon represents the local configuration unit to DynaCom.

The events generated from be adap e the result of managed execution,
including but not limited to garbage collection, class loading/unloading, CLR
startup/shutdown and JIT compilation. The event of our interest is JIT compilation,

for which we implement in-memory CIL manipulation for the event handier. The
adapted CIL will then be JIT compiled and executed resulting in changed WS
behavior. A one-shot change to CIL will reduce the traceability of adaptation, impede
the removal of the imposed adaptation (thus incapable of dynamic decomposition),
and restrict the flexibility of further adaptation. Therefore, we interpose a Hook code
(4,5) in the WS application to be adapted, which will check the Adaptation Advice
Repository (AAR) for applicable adaptation advice. Ile term "advice" is further
explained in the next section. AAR is located in a shared memory for fast access
during in-memory CIL manipulation. The AAR includes an Advice Library storing
predefined reusable advice in the compiled managed code form, as well as an Aspect

Usage Specification (AUS) component to indicate applicable advice for WS. The
Profiler and the AAR are subject to external configuration (7-11): for 7, the

0

configuration is used to narrow down the scope of profiling; for 8-11, the
configuration is used to dynamically specify adaptation rules, among which 8
corresponds to a direct manipulation of adaptation rules, while 9-II corresponds to
indirect manipulation of adaptation rules through a rule inference engine. The
inference engine can dynamically inject AUS into AAR based on the rule
specification, which is to be detailed in Section 5.2. The laptop icon in the upper-right
corner represents the local configuration unit. The configuration unit for DynaCom
can adopt a GUI interface or an API interface. In our work, we use a simple console
for the local configuration unit handling configuration 7-9, while configuration 10-11
is realized through an API interface.

4.3 Dynamic Component Composition Through Dynamic Aspect Weaving

4.3.1 Modularized Component Composition

In Figure 2, each DynaCom only hosts 2 components, which is for simplicity purpose
in illustration. In reality, a DynaCom may be hosting multiple components.
Consequently, a component handling a crosscutting concern may be expected to be
composed with multiple other components. Thereafter, it is not possible to specify
adaptation for every individual component upon changing of requirements. Instead,
there needs to be a means to abstract the adaptation in a modularized way. Aspect-

Oriented Programming (AOP) [Kiczales, 97] offers a means to abstract cross-cutting
concerns in a modularized way called an aspect, and the concerns can be weaved
using weaver technology into the base program based on the join point model, which
specifies the destination to weave concerns. In the same vein, we specify the
adaptation advice in the AAR in a modularized way following AOP style 7. To weave

and unweave the specified advice, we instrument the hooks at both the entry (pre-
hook) and exit point (post-hook) of the WS method to be adapted, which are used to
check into the AAR to see if corresponding before advice and after advice is
applicable: the former performing some pre-processing before the actual WS method
execution, while the latter performs some post-processing immediately before the WS
method execution returns. Such pre- and post- processing capacity can be used to
instrument codes for addressing non-functional concerns, such as applying access
control upon the entry into the WS method, or applying state persistency service for
the executed WS application upon the end of the WS call. Also included in the pre-
hook are the instructions to check if an around advice is specified or not, and a jump
instruction to redirect the execution to the exit point of the WS application. The jump
instruction is to be activated if an around advice is found valid in the AAR. With
around advice, the original WS will be replaced with new behaviour specified in that
around advice. Consequently, not only the original WS can be decorated, it can also
be overridden completely, which is necessary when a buggy WS is identified and

7 AOP also offers a means for separating composition specification from components
to be composed, with the underlying weaver realize the composition. As such, in case
the components to be composed do not involve crosscutting concerns, the component
composition is still specified in the same way as an aspect weaving specification with
AUS.

0

0 needs to be removed, or an old service module need to be updated. The around advice
sufficiently offers a delegation and wrapping approach for component composition
which is exemplified in Section 5. By using a hook for weaving, advice can be
applied dynamically and proactively. Meanwhile, unweaving advice can be realized
by dis-activation of the corresponding AUS in AAR. Figure 4 is the CIL manipulation
template for adapting a WS method.

IL 0000: tdstr "classname/method name/parameter name list/retumtype/before"
IL-0005: call void dynaweave.hook::advising(string) //to check & apply before-advice
ILO000a: pop l/to maintain the original stack
IL-000b: Idstr "classname/method name/parametername list/returntype/around" pre-hook

IL_-0010: call void dynaweave.hook::advising(string)- /to check & apply around-advice
IL_00 15: brtrue IL_020b
ILO01 a: <Original Method body in IL>

IL 0200: ldstr "classname/methodname/parameter namelist/retumtype/after"
IL-0205: call bool dynaweave.hooker::advising(string) /to check & apply after-advice post-hook
L,_020a: pop /to recover the original stack after original method is executed

IL_020b: return

Figure 4: Instrumentation ofIL code of a WS method

4.3.2 Specifying Component Composition via Aspect Usage Specification

The AOP weaving specification in AspectJ [Kiczales, 01] can be adapted for
component composition specification in terms of aspect weaving as illustrated in
Table 1.

Comp onent Composition Aspect Weaving Specification
after (a)

a precedes b {b;

Sequential before (a)
a follows b {b;

around (a)

a is wrapped by b at the {b;
Wrapping beginning and c at the end proceedo;

c;

around (a)
Overiding a is overriden by b {b;

Table 1: Composition specification in the form of aspect weaving

0

The aspect weaving specification is represented in AUS. The type system used in the
AUS in AAR can be based on the object-oriented CTS of CIL, for which each CLR
hosted language is translated to before being JIT compiled. Therefore, such
specification is applicable to all WS applications running in CLR, which provides a
language-neutral way for AUS. However, writing adaptation AUS based on low level
CTS is error-prone and not necessary for high-level AUS. As a result, AUS is written
in XML rather than in CTS, which is based on the following observations:

1) Necessity
" Components delivered may be in binary form with source code being

unavailable, thus AUS at the application code level is not feasible. On the
other hand, components in the .NET WS environment are exposed through
the WSDL interface, which offers a reference point for specifying WS
component adaptation.

" AUS, as the specification reflecting the business requirement adjustment (by
composing and decomposing related components), should have an
abstraction level close to business requirements, rather than being tied to
underlying implementation details.

"* XML-based specification for AUS can be directly serialized and queried by
hooks using XML manipulation APIs such as DOM or SAX or XQuery 8.

2) Sufficiency
* Web Service Description Language (WSDL) is based on the XML Schema,

which is another language neutral type system that can be mapped to the
language-neutral CTS. The XML Schema based specification is parsed and
translated to CTS to be matched against the string provided by the hook
such as described in IL 0000, IL_000b, IL_0200 in Figure 4. The AUS in
AAR accords with XML schema as illustrated in Figure 5.

<wsdl:operation name="applyadvice'>
<wsdl:input message="tns:advicetype"/>
<wsdl:input message="tns:retuum_type"/>
<wsdl:input message="tns:classname"/>
<wsdl:input message="tns:methodname"/>
<wsdl:input message= "tns:parameterlist"!>
<wsdl:input message="tns:advicename"/>

</wsdl:operation>

Figure 5: The A US schema

Associated with each advicename is the path information for actual advice in the
form of managed code stored in the AAR. All the advice code is defined as a template
with the tuple <Classname, Methodname, ParameterList> as parameters, which
offers reusability of advice. Such advice can be pre-built in any .NET language and
compiled into managed code. If a matching advice is found, then the advice code will
be loaded from the corresponding path and called. In our work, the wild-card
characters are also supported for AUS.

8 http://www.w3c.org

4.3.3 Autonomous Component Composition Using Rule Inference Engine

Functionality for the composed distributed software systems can be predicted based
on the constituent components [Hissam, 03], thus a component composition based on
functional requirements can be specified assertively. In contrast, non-functional
properties such as pricing based on end-to-end delay (service consumption duration)
for composed distributed software systems can only be reasoned about at runtime
because of their dynamic characteristics. As such, a distributed software system needs
to self-adapt itself by composing and decomposing components autonomously to
achieve the expected QoS. The self-adaptation decisions can be collectively built
into a knowledge base proactively and retroactively. Therefore, the complete dynamic
component specification in terms of dynamic, autonomous aspect weaving takes the
following rule:

apply [aspectname] when [logicalcondition]

The when clause represents the condition under which the action apply

[aspect:name] need to be performed. Consequently, the AUS schema in Figure
5 will be augmented with an attribute when for the wsdl :operation element.
The use of rule inference provides a means for not only separation of concerns
between business rules and the underlying technical implementations for component
compositions, but also autonomous composition at runtime.

In our work, we use Jess [Friedman-Hill, 05] as the underlying inference engine,
which is a forward and backward chaining rule engine for the Java platform.
Associated with the inference engine are the fact bases and the rule base as shown in
Figure 3. The rule base is only accessible to the local hosting site, and represents local
autonomous composition policies; comparatively, the fact base is exposed to both the
local and remote site, which can be manipulated by either the local configuration unit,
local components, or remote components. The fact bases of different DynaCom are
federated, and a local rule engine can query remote fact base for triggering an action.
This is useful when a local composition rule is dependent on remote component status
(which is reflected in the remote fact base). For example, the unavailability of a
remote components during a certain period of time will trigger the local component to
connect to an alternative component, which offers a means of fault tolerance.

Jess offers a hybrid programming paradigm between the Java language and
declarative rule specification: the Java code can invoke the Jess rule engine while the
Jess rules invoke Java code. In order for Jess fact base to interoperate with remote
components, as well as to enable the Java-based inference engine interoperable with
.NET environment, we wrap the Java-based Jess API with a WS layer using Java
WSDP9.

9 Java WSDP - Java Web Services Developer Pack - http://java.sun.com/
webservices/jwsdp/index.jsp

5 Case Study

In this section we present two case studies. The first one is an assertive dynamic
composition example which is also intended to illustrate how every part shown in
Figure 3 works together. The second one showcases a dynamic composition paradigm
of autonomous composition.

5.1 Composition Crosscutting Credit Authorization Components

Figure 6 provides an example of a college student credit authorization WS to
demonstrate the assertive dynamic component composition for a non-functional
concern: access control. Figure 6-A provides a simple WS application written in C#,
which provides a WS method for authorizing credit card application based on the
Social Security Number (SSN' 0) and the expected credit line. The corresponding
WSDL in Figure 6-B can be automatically generated from the source code in Figure
6-A based in ASP.NET, which in turn is to be exported and used as the basis for AUS
as well. Figure 6-C is an AUS with an around advice to apply credit history checking
before any credit card application request is processed. The AUS represents a
sequential composition specification for a component encapsulating crosscutting
concerns (here HistoryChecking). The wild card specification in credit * represents
all credit application with the request name preceded with "credit-". Figure 6-D is the
source code for the pre-built credit history checking advice, which can be written in
any .NET language (here C#) and is compiled and persisted in the managed code
form. The type systems in Figure 6-A, Figure 6-C, Figure 6-D are translated into CIL
and matched up in CLR. Once a match holds, the advice in Figure 6-D will be called
by the hook instrumented at runtime. The WS application source code level detail is
transparent to AUS in Figure 6-C, as well as to the HistoryChecking component in
Figure 6-D. By instrumentation of intermediate code, component composition can be
realized across language boundaries without invasively changing application source
code.

5.2 Composing Travel Planning Components

The former section demonstrates how each part in DynaCom is integrated together for
assertive dynamic component composition, particularly how the intermediate code
manipulation enables the component composition across language boundaries without
invasively accessing the application source code. This section will further explore the
dynamic composition for multiple components for travel planning, which not only
includes assertive dynamic composition, but also autonomous dynamic composition
using the Jess rule inference engine. Complementing the previous case, this case
focus on the user level component composition specification as opposed to dwelling
on the low level intermediate code manipulation.

In Figure 7, the boxed part contains the WS components for travel planning, with
those above the box representing the types used in the WS components. Each
customer plans the travel through a travel agent Travel-Agent (TA). The travel agent

20 An identification number used to identify income earners in the United States.

0

- els er t o",.credit ocr studcnt> I eS I B
5:- • cplexTy-pe>

S.:elemrer.t -. ' .:.-"2 .-. : U~="1 r=creditflne" : y•s:int" />

- sequerce>

C$ *eler.er.t . .- "'c="'" -o er /e>
I- Suder~tF~ess-s">

Ceolerce.-l -. . .e'cretitcclleqCstuientResult"

S:-sbolea. /I <ua~d:opertmonwnae~apply_advice"> C

<IsS seqJence> Cwsd]:j t rw nssage•arenslt

C/: crple--ype> <wsdl:tnpa gc-Nbmxpp"/>

</IS: sch~ema> <esdterpsu ore~ssag- cned "*D

- ,wsol:_essaoe :': ", 'redi't_ccllegest dentSoapln "> <'e:irpm orrssegý1hmychmking'/>

<s.dl:part .;- ""Praeters" ;v :, -tns:credit collegestudent" /> </sc:operntioo>

,,,! d-I :essace>
- <wscl :mess•qe -' credcr _cllegestucentSoapOcf*>

cwsd]:part . "'Paraeters" C="tns:credit collegeEtudenttesponse" />
'lw5d] :-essace>

- wsdl:pcrtType - AppSoap>
- <w-sd:operation n.;r,'"ceditcllegesLudenL'>

wsol:inpJt --.-- tns:c.edit collegestudentSoapln" '>
'escisoatput ,:t'•],:-''tns:cceditcc.legestsdentSoapOut" />
'/wsdW coperat oon>

<wurdI portType>

class ManApp: WebService{ A

public vMl proessrequest(string SSN, int crecifmne)

public das c hrio-rheng D
} (

public statc vod apping(sting ssn, int amourit)

[Web"ethod] boot ak= doredithistorycheddng(ssn,

public boot editcollegestudent(strng SSN. Wnt aedfilne) amotci);if(ok)

processrequest(SSN, a idttne); poceedO;
else rekm false;

return rue;

FgCIUCLR

Figure 6: Composing credit authorization component assertively(A +D)

.Itinerary i fg
I ' s ý11 I lig t

nam e _st nng . . .

,Iottrnies'ttalp ce foalit flghl seatclass string I

s.op_over string -price float

.cfrflpf----------------- ---

Shotel Holelinfo

Mtaveler - -name strng *starling dant

c star int o ie urnirdale tet
• ocaton string i/ +orngn snng

r sreqested int rdsnaosnn
r ole Prime floal

-compa m -- -- -- --n -on n . - --

-m mbrume --nt

Ifrequent_airlne'string en
+mernberstalus int

Fimemberclub:s rena i

wil adl bt the
boi

Fohghfh
g gking

(FBo)

.E r c credit his Iege i hio freqe nt f liernumbrhr

Membership_Management (MM) b th trael pcaelincdgo

re dipoints(Itinerary):bo
on

+getporinls(membemnumint, frequen _airline:string):in!

ivanlate(membethum:n e etrip.All thoseiWS components in the ox areloosel

couledanddyamiall bondbasd o thirparnerhip sraviellnigW charge, andQs.

Figure 7: Class diagramfor travelplanning WS components

O will handle both the booking of flight, FlightBooking (FB) and hotel, HotelBooking

(HB). Every traveler can credit his mileage into his own frequent flier number through
Membership_Management (MMr. He can book the travel package including both
hotel and flight, or just book one of them. He can also book for group travelers. The
result of the travel booking process is the itinerary information (Itinerary), which

includes the total cost of the trip. All those WS components in the box are loosely
coupled and dynamically bound based on their partnership, service charge, and QoS.
Figure 8 illustrates the travelling components composition process with sequence
diagram. The italicized part represents the dynamically composed components; the
TA and its associated methods represents the static front end travel agent components
to the customers with back end components dynamically composed on demand.

5.2.1 Static Front End
During travel planning, the customer starts from TA WS method BookPackage,

with the backend components dynamically composed to fulfill the travel planning
purpose. The TA serves as front end components to the customers to be dynamically
bound to backend WS components, and the BookTravel method is implemented as
shown below:

Itinerary BookPackage (Itinerary it)

FlightInfo fi;

HotelInfo hi;
fi=BookFlight (it);
hi=BookHotel (it);
return combine(itl,it2);

5.2.2 Dynamic Backend

While the front end code as shown above is static to the customer side, there are some

dynamic component composition concerns in the backend that is transparent to the

customers:
- Dynamic partnership
The front end TA component may have dynamic partnership with back end FB and

HB (we assume membership management is centralized and statically bound in this
case in accordance to the real world examples, where membership such as Social
Security Account is centrally administrated by the appropriate government agency)

based on their mutual contract, service charge (if the service charge is exceeding the
budget, the partnership will be cancelled and a new partner will be identified), or QoS
(if the service of the current partner is down, an alternative partner need to be

identified). As such, the partnership should be established dynamically, which is also

subject to dynamic change consequently. Figure 8 illustrates the dynamic partnership
establishment by using two <<create>> messages before the call of BookPackage,

S<<create>>

:FB

S<<create>>
1 1 :HB

BookPackage _ __ _I
Ivalidate

-- -- -- -- - j - - -- - --

getFlight

- -------- --------------------

I ~ II
I~u~I'

~ L , J I

getH~otet

SI -I

0

c reditpoints

Figure 8: Dynamic composing travel planning WS components

which can be translated into the following dynamic composition specification
using before advice".

before(Itinerary *.BookPackage (Itinerary it))

this. fb= new FB (...)/; /the "..."part provides the
//information referencing the actual FB component that
//the instantiated object is bound to

this.hb= new HB(...;

Furthermore, the front end BookFlight and BookHotel code is dynamically overridden
to delegate to the actual methods of FB and HB respectively. This is achieved using
around advice as shown below:

around (FlightInfo *.BookFlight (Itinerary it))

return fb.getFlight (it.traveler, it.flight);

around (HotelInfo *.BookHotel (Itinerary it))
{

return fb.getHotel (it.traveler, it.hotel);

Dynamic membership management
With the tightening security measures, the customer's background is subject to be

checked by the central member management (MM) unit upon designated period of
time. As such, a rule is added in Jess that for a given duration, the membership will be
validated (e.g., background checking, passport verification) for each BookPackage
call. Assume during the period July 1, 2005, to September 20, 2005, all traveller's
membership will be validated by MM. To enable the Jess rule engine to trigger the
dynamic composition of validation behavior, we need to:

l)capture the execution of BookPackage and relay the values into less fact bases;
2)have a bridge from Jess to .NET for rules to directly manipulate AAR in Figure

3.
As is mentioned in Section 4.3.3, we use WS to wrap a Java class, which in turn can
interoperate with Jess. Thus, a .NET based WS component can interoperate with Jess
rules. Specifically, to achieve 1), we add into the "before advice" for BookPackage
the following code:

"11 For illustrative purpose, we use the syntax resembling AspectJ to specify the
component composition, which in turn will be translated into XML representation as
described in Section 4.3.2.

before(Itinerary *.BookPackage (Itinerary it))

...... //above are other advice code which are ignored
//here for clarity

WS Jess.assert("membernumber",
it.traveler.membernumber);

WSJess.assert("airline",
it.traveler.frequentairline);

Date date=getdate();
WS Jess.assert("date",date);
//the above three lines add three
//facts to the Jess fact base through WS-Jess bridge

To achieve 2), we define a Java class which is used as a relay between Jess and .NET
platform, so that whenever the rule fires, AAR in .NET can be manipulated from Jess.
The Java class is defined as follows:

class Jess WS{
public static void

apply(string advicetype, String returntype,
String classname, String methodname,
String parameterlist, String advicename)

... //code to interoperate with .NET to update AAR;

The parameter list is consistent with the XML elements as shown in Figure 5. The
Jess rule is specified as follows, which calls into the Java class JessWS:

(bind ?aus (new JessWS)) ;;aus wrapper is the Java
;;wrapper for writing AUS
;;into the AAR through Java-WS bridge using
;;Java WSDP as ;;described in Section 4.3.3

(bind ?para (str-cat ?membernumber "/" ?airline))

;;the values of ?membernumber and ?airline
;;are fed into the fact base by the before
;;advice for BookPackage

(defrule security_control
(date ?d &: (>= ?d 20050701)&:(< ?d 20050920))

=>(?aus apply "before", -", "TA", "BookFlight",
?para, "MM.validate"))

The last line defines a Jess rule specifying once the booking date is between July 1,
2005 and September 20, 2005, the membership validation advice will be applied
through Jess-Java-WS interoperation before the call of *.BookFlight in .NET
environment. Once the condition is satisfied during runtime, the corresponding rule
will be applied autonomously for dynamic composition. Furthermore, as the Jess rule
exists as a separate entity for configuration from the execution logic, the composition
rule can be adapted as needed at runtime as well.

Likewise, dynamic composition can be applied to credit travel points after the
travel reservation, using after advice:

after(Itinerary *.BookPackage (Itinerary it))
MM.creditpoints(it);

Furthermore, dynamic composition can be applied either assertively or autonomously
as shown above for other non-functional property guarantees including but not limited
to budgeting (if the cost of the requested service exceeds the budget, either to choose
a cheaper service or to remove subcomponents for reducing cost), and load balancing
(if current load is over capacity, the service requests are to be delegated to alternative
components). As those composition specifications overlap the aforementioned
dynamic composition specifications in principle, details are omitted here.

6 Performance Evaluation

Using the profiler to handle all the events generated from all managed execution in
CLR is expensive and will degrade system performance significantly. Therefore, we
apply optimization at three levels through configuring the profiler as indicated in (7)
in Figure 3:
I). As the CLR can be launched from a shell, Internet Explorer, ASP.NET, and other

customizable CLR hosts for managed execution, we configure the profiler to
skip profiling for all non-ASP.NET modules hosted in CLR, which can be
filtered easily based on the name of the module that launches the CLR.

2). We could further trim unnecessary profilings based on class name, or CIL
method. This is possible because all managed code is translated to CIL, and the
CIL level information can be derived from the corresponding WSDL for the WS;
this is also necessary to avoid profiling system classes and methods.

3). We mask all unnecessary events except JIT compilation events, which is needed
for handling CIL manipulation.

To evaluate the influence of CLR profiling-based WS adaptation on performance,
we implemented a simple WS server application with 100 loops for calling a method,
which contains only a single plus calculation in its body. We host this WS application
on a Dell Workstation with Intel XEON CPU 2.2GHx, 1.00GB RAM, which is
installed with Win XP professional version 2002 with IIS 5.1, .NET framework
version 1.1.4322. We configured the profiler so that the method is to be profiled and
adapted with log advice to write to a file a line of strings. A WS stub is generated by
compiling the corresponding WSDL for this simple WS application. The WS stub is

instrumented together with a simple client application for the client application to call
the server-side WS. The client side is hosted on a Dell PC with Intel Pentium 4 CPU
1.80 GHz, 512 MB RAM which resides on the same LAN environment as the server
so as to minimize the network influence during the server side performance
benchmarking.

Note that the CLR profiling-based approach only applies to managed code to be
loaded and JIT compiled. Therefore, we run ASP.NET in the managed mode for
profiling WS to realize dynamic adaptation. ASP.NET can load one worker process to
handle a pool of WS requests. Once the worker process is launched to serve the first
WS requests in the pool, it continues to serve other WS requests in the same pool until
the end of its lifecyle without itself being reloaded into CLR, thus it fails to profile the
other WS applications in the same pool. Therefore, we adjust the setting for ASP.NET
so that a new worker process will be created for each WS request so that each WS call
can be captured by the Profiler and thus is adaptable. The goal of our tests is to
evaluate how the adjustment of worker process lifetimes (Figure 9-a), and the
enactment of profiling-based dynamic adaptation (Figure 9-b) affect the performance
of WS provisioning in the peer-to-peer composition model.

For the case in Figure 9-a, we did not provide any adaptation advice when
adjusting the worker process life between zero life (a new worker process is created
for each WS request) and infinite life (the same worker class is used for multiple WS
requests). The absence of advice execution will help clarify the influence of the
changing life of a worker process on the system performance.

There are significant differences between the first call and the remaining calls for
an infinite life case as the first call involves the creation of a new worker class, thus
incurring more overhead than the remaining WS calls which reuse the original worker
process. Also the presence of profiling does not affect performance much in the case
of infinite life, as the worker process is no longer to be reloaded for new WS requests,
thus the new WS will not be adapted, and the event handler in the profiling API is
ignored. In comparison, the worker process with zero life will incur a performance
degradation of 1.7 times slower with profiling on than with profiling off. With the
absence of the profiler, the overhead incurred by adjusting from infinite life to zero
life will be 3.0 times. With the absence of advice, the overall performance
degradation (with profiling on, zero life for worker class) against the conventional
WS provisioning scenario (with profiling off, infinite life for worker class) for this
WS provisioning is 3.0*1.7=5.1. Figure 10 illustrates the performance degradation.

In Figure 9-b, we focus on evaluating the influence of active advice on the overall
performance. Therefore, the worker process is set with zero life. We found the
number of active advice will not affect the performance linearly, as the AUS are
stored in the paging file to be shared by hooks, which constitutes a minor overhead in
comparison to that incurred by hook instrumentation and calling of advice. The
weaving of a matching advice in the case of zero life in Figure 9-b incurs a
performance degrade of 2.2 times. Therefore, the overall performance degradation
(with profiling on, zero life for worker class) against the conventional WS
provisioning scenario (with profiling off, infinite life for worker class), by
synthesizing the result descibed in the preceding paragraph, will be 2.2*5.1=1 1.2.

Without Adaptation Advice

4000

00 3000 6 -Infinite Life
Profiler On

E 2000 -. ,- ---- Infinite Life

"" 0 •" .'- " Profiler OffS1000
._E_ _ __ _ Zero Life Profiler

0 ' On

1 2 3 4 5 Zero Life Profiler
Off

number of tests

(a)

With Adaptation Advice

8000

o 6000 0 --- O matchinl
advice

4000--- 1 match in I
advice

E 2000 0 match in 5
0 _ _ _ _advice

1 2 3 4 5 1 Mhatch in 5
advice

number of tests
(b)

Figure 9: Benchmarking dynamic WS adaptation

In the real world deployment, we can reduce the overhead by setting the worker
class to zero life at the adaptation time, then resetting it to infinite time after
adaptation is done. Of course this assumes a predicable adaptation process.

Performance Degradation
(without adaptation advice)

5
40 3,3
2
21 prf e Hprofiler off
O0,[p profiler on

N

Figure 10: Performance degradation with 0 adaptation advice

7 Related Work

Component composition can be enacted at design level (e.g., [Clarke, 02], [Keller,
98]), and application code level (e.g., [H61zle, 93], [Mezini, 98], [Seiter, 99]). In
contrast, our work on component composition is enacted at intermediate code level
without introducing new language constructs. With a lower-level of abstraction, our
work enables cross-language component composition, while the above work restrict
the component composition to a specific language. Also, none of the aforementioned
work on component composition is applied at runtime, which is however necessary in
distributed computing environment.

The Composition pattern has been proposed in [Clarke, 01], which uses a UML
template for specifying composition of crosscutting concerns at a high level and maps
sequence diagrams into AspectJ code. Our composition pattern is represented with a
comprehensive framework rather than just a design-level pattern. Also a sequence
diagram is used here for illustrating the dynamic partnership, with each object in the
sequence diagram corresponding to a partner when mapped to dynamic composition
specification. In contrast, each object in a sequence diagram ia synthesized to an
aspect construct in AspectJ in [Clarke, 01]. While AOP has been applied to
distributed systems for resolving crosscutting concerns ([Pulvermuller, 99], [Zhang,
03]), here we dedicate AOP to the composition purpose: for composing components
handling cross-cutting concerns in a modularized way, and for separating composition
from components. Moreover, we use the Jess inference engine to autonomously apply
aspect weaving for component composition. While the work described in [Yang, 02]
also aims at applying an aspect-oriented approach to dynamic adaptation, they only
offer a means for making the AOP-based adaptation ready, without presenting any
solution on how to use rule engines to trigger the adaptation. Additionally, [Duzan,
04] presents a prototype implementation in the QuO toolkit for an aspect-based
approach to programming QoS-adaptive applications. In contrast, our work is targeted
on loosely coupled service oriented computing as opposed to tightly coupled
distributed object computing in QuO, where adaptation rules are triggered by
exceptions thrown from runtime.

Our work also incorporates non-functional concerns into WS component
composition. Prior work such as IBM's Web Services Level Agreement (WSLA)
[Dan, 02] and HP's Web Service Management Language (WSML) [Sahai, 02]
incorporate the notion at higher-level presentation, rather than address it at a lower-
level platform layer. We believe a treatment at a platform layer is necessary toward
thoroughly addressing non-functional concerns for WS.

Our work is rooted in the UniFrame project ([Raje, 02], [Olson, 05]), which aims
at creating a framework for seamless integration of distributed heterogeneous
components. In UniFrame, component composition is also following the peer-to-peer
paradigm, which is enabled through a discovery services in search of a matching
component. Once a searched component does not match the requirement functionally
or non-functionally, the search process will be launched again, which exhibits the
autonomous features similar to that described in the work presented here. While the
work presented here is scoped at the service-oriented computing paradigm for
component composition, the principles can be integrated into UniFrame as well.

8 Conclusion and Future Work

This paper presents a dynamic component composition approach under service-
oriented paradigm in the .NET environment. By using intermediate code
manipulation, component composition is 1) possible to cross language boundaries so
long as they are CLR-compliant; 2) achieved in a non-invasive manner; 3)
implemented not only in an assertive manner, but also in autonomous manner using a
rule inference engine; 4) specified using the AOP paradigm for separating
composition specification from components to be composed, and for modularized

composition of components handling cross-cutting concerns, with hooks used to
weave and unweave advice at runtime proactively and retroactively. Moreover, as the
WS components can be exposed with XML-based WSDL, the component
composition can be specified with language neutral XML, which is further mapped to
language-neutral type system CTS, with low-level CTS transparent to upper level
composition decision makers. The experimental results show the profiling-based
dynamic composition approach is encouraging with the appropriate control over the
profiling scope in the WS scenario. Even though the approach presented in this paper
is .NET based, the principle also applies to other platforms with adequate software
vendor support.

With the different abstraction levels involved as shown in Figure 1, one future
direction is to investigate the model-driven approach ([Cao-b, 05], [Frankel , 03],
[L~deczi, 01]) for modeling component composition concerns, so that component
composition can be represented in high-level models which reduces the gaps between
business requirements and underlying implementation, with AAR and rules as shown
in Figure 3 automatically synthesized from models. We would also like to explore the
use of mobile agents in the peer-to-peer component composition scenario where
composition decisions can be federated and communicated seamlessly, for which
security is also of vital concern in the future research.

Acknowledgements

This research is supported in part by the U. S. Office of Naval Research under the
award number N00014-01-1-0746.

* References

[Brown, 00] A. W. Brown, Large-Scale Component-Based Development, Prentice Hall, 2000.

[Cao, 02] F. Cao, B. Bryant, R. Raje, M. Auguston, A. Olson, C. Burt, Component
Specification and Wrapper/Glue Code Generation with Two-Level Grammar Using Domain
Specific Knowledge, In Proc. Int. Conf. on Formal Engineering Methods, October 2002, 103-
107.

[Cao-a, 05] F. Cao, B. R. Bryant, S.-H. Liu, W. Zhao, A Non-Invasive Approach to Dynamic
Web Service Provisioning, In Proc. IEEE Int. Conf. on Web Services, July 2005, (to appear).

[Cao-b, 05] F. Cao, B. R. Bryant, W. Zhao, C. C. Burt, R. R. Raje, A. M. Olson, M. Auguston.
Model-Driven Reengineering Legacy Software Systems to Web Services, 2005 (submitted).

[Chen, 01] Q. Chen, M. Hsu, Inter-Enterprise Collaborative Business Process Management, In
Proc. Int. Conf. on Data Engineering, April 2001, 253-260.

[Clarke, 01] S. Clarke, R. J. Walker, Composition Patterns: An Approach to Designing
Reusable Aspects, In Proc. Int. Conf. on Software Engineering, IEEE Computer Society, May
2001, 5-14.

[Clarke, 02] S. Clarke, Extending Standard UML with Model Composition Semantics, Sci.
Comput. Program, 44(1), 2002, 7 1-100.

[Colan, 04] M. Colan, Service-oriented architecture expands the vision of Web Services, 2004,
ht-tp://www- 106.ibm.com/developerworks/webservices/library/ws-soaintro.html.

[Dan, 02] A. Dan, A. R. Franck, A. Keller. R. King, H. Ludwig, Web Service Level Agreement
(WSLA) Language Specification, 2002, http://dwdemos.alphaworks.ibm.com/wstk/common
/wstkdoc/services/utilities/wslaauthoring/WebServiceLevelAgreementLanguage.html.

[Devanbu, 96] P. Devanbu, S. Karstu, W. Melo, W. Thomas, Analytical and Empirical
Evaluation of Software Reuse Metrics, In Proc. Int. Conf. on Software Engineering, IEEE
Computer Society, March 1996, 189-199.

[Duzan, 04] G. Duzan, J. P. Loyal], R. E. Schantz, R. Shapiro, J. A. Zinky, Building Adaptive
Distributed Applications with Middleware and Aspects, In Proc. Int. Conf. on Aspect-Oriented
Software Development, March 2004, 66-73.

[Frankel , 03] D. S. Frankel, Model Driven Architecture: Applying MDA to Enterprise
Computing, Wiley, 2003.

[Friedman-Hill, 05] E. J. Friedman-Hill, Jess 7.0, The Rule Engine for the Java Platform,
Sandia National Laboratories, 2005.

[Gough, 021 J. Gough, Compiling for the .NET Common Language Runtime (CLR), Prentice
Hall PTR, 2002.

[Heineman, 01] G. T. Heineman, W. T. Councill, Component Based Software Engineering:
Putting the Pieces Together, Addison-Wesley, 2001.

[Hissam, 03] S. A. Hissam, G. A. Moreno, J. A. Stafford, K. C. Wallnau, Enabling predictable
assembly, Journal of Systems and Software, 65(3), 2003, 185-198.

[H61zle, 93] U. H6lzle, Integrating Independently-Developed Components in Object-Oriented
Languages, In Proc. European Conference on Object-Oriented Programming, July 1993, 36-56

[Keller, 98] R. K. Keller, R. Schauer, Design Components: Towards Software Composition at
the Design Level, In Proc. Int. Conf. on Software Engineering, April 1998, 302-311.

[Kiczales, 97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.-M. Loingtier,
J. Irwin, Aspect-Oriented Programming, In Proc. European Conference on Object-Oriented
Programming, June 1997, 220-242.

[Kiczales, 01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. G. Griswold, An
Overview of AspectJ, In Proc. European Conference on Object-Oriented Programming, June
2001, 327-353.

[L~deczi, 2001] A. Lddeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J. Sprinkle, G.
Karsai, Composing Domain-Specific Design Environments, IEEE Computer, 34(11), 2001, 44-
51.

[Mezini, 98] M. Mezini, K. J. Lieberherr, Adaptive Plug-and-Play Components for
Evolutionary Software Development. In Proc. Conf. on Object-Oriented Programming
Systems, Languages, and Applications, October 1998, 97-116.

[Newcomer, 02] E. Newcomer, Understanding Web Services, Addison Wesley, 2002.

[Olson, 05] A. M. Olson, R. R. Raje, B. R. Bryant, C. C. Burt, M. Auguston, UniFrame-a Unified
Framework for Developing Service-Oriented, Component-Based, Distributed Software Systems,
Service-Oriented Software System Engineering: Challenges and Practices, Idea Group, 2005, 68-
87.

0
[Pulvermuller, 99) E. Pulvermuller, H. Klaeren, A. Speck, Aspects in Distributed
Environments, In Proc. Generative Component-based Software Engineering, September 1999,
37-48.

[Raje, 02] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson, C. C. Burt, A Quality of
Service-based Framework for Creating Distributed Heterogeneous Software Components,
Concurrency and Computation: Practice and Experience, 14(12), 2002, 1009-1034.

[Sahai, 02] A. Sahai, V. Machiraju, M. Sayal, L. J. Jin, F. Casati, Automated SLA Monitoring
for Web Services, 2002, http://www.hpl.hp.com/techreports/2002/HPL-2002-191 .pdf

[Seiter, 99] L. M. Seiter, M. Mezini, K. J. Lieberherr, Dynamic Component Gluing, In Proc.
Int. Symposium on Generative Programming and Component-Based Software Engineering,
September 1999, 134-164

[Stutz, 03] D. Stutz, T. Neward, G. Shilling, Shared Source CLI - Essentials, O'Reilly Press, 2003.

[Szyperski, 02] C. Szyperski, D. Gruntz, S. Murer, Component Software: Beyond Object-
Oriented Programming, 2nd ed., Addison-Wesley/ACM, 2002.

[Yang, 02] Z. Yang, B. H. C. Cheng, R. E. K. Stirewalt, J. Sowell, S. M. Sadjadi, P. K.
McKinley, An Aspect-Oriented Approach to Dynamic Adaptation, In Proc. The First
Workshop on Self-healing Systems, November, 2002, 85-92.

[Zhang, 03] C. Zhang, H.-A. Jacobsen, Refactoring Middleware with Aspects, IEEE Trans.
Parallel Distrib. Syst. 14(11), 2003, 1058-1073.

0

* GridFrame - A Framework for Building Quality
Aware Component-based Grid Systems
Pradeep J. Mysore, Rajeev R. Raje, Purushotham V. Bangalore1 and Barrett R. Bryant1

Department of Computer and Information Science, 'Department of Computer and Information Sciences,
Indiana, University Purdue University Indianapolis, University of Alabama at Birmingham,

723 W. Michigan, St, SL 280H, Indianapolis, IN 46202, Birmingham, AL 35294
USA. U.S.A.

pmysore@cs.iupui.edu, rraje@cs.iupui.edu puri@cis.uab.edu, bryant@cis.uab.edu

Abstract-Predominantly, the Grid world has focused on service (QoS) for individual Grid services as well as a
discovering and using hardware solutions for executing scientific constructed Distributed Computing System (DCS) out of these
and mainstream applications. The applications for Grid are Grid services. The ability to compose and deploy grid-enabled
typically handcrafted and also assume the presence of an expert applications from pre-existing components will enable the
user, thus, making this process error-prone. This paper presents rapid design and development of next generation distributed
a framework, called GridFrame, whose vision is to reduce the
complexity of the applications for Grid systems. GridFrame applications while promoting better software reuse with the

achieves this goal by providing an approach for semi- creation of domain-specific component repositories.
automatically discovering independently developed components
and constructing quality-aware Grid applications using these II. RELATED APPROACHES
components. A Grid experience is defined as the Grid utilization process,

I. INTRODUCTION which runs from the Grid application creation to the final
deployment and execution of the application. Most of the

Software Component Frameworks [1] have been established existing approaches, such as [4, 5] are targeted at the latter,
as a standardized way of building commercial distributed i.e., deployment and execution of the application, and tackle
applications from independently developed sub-units. challenges such as requirements analysis, selecting hardware
However, the Grid world, which is predominantly scientific, resources and providing middleware facilities for enabling a
has been slow in embracing these concepts [1, 2]. With user to deploy a Grid application(s). Typically, these
increasing mainstream usage of Grid Computing, software approaches assume that the Grid application has already beeri
component composition and reuse through service oriented designed and pre-customized to the Grid deployment phase.
Grids have become an increasing need for current and future Only a few approaches (e.g., [3, 6, 7, and 8]) address the
Grid projects. challenges of providing a software component framework for

Despite the popularity of service oriented Grid, several creating component-based Grid applications using pre-built
interesting challenges, such as creating applications from pre- components.
existing components, masking their heterogeneity, and Before elaborating on any of the current Grid software
reducing the manual involvement in the development phase, component framework approaches, it is necessary to first
have yet to be tackled adequately. The current software identify the requirements and constraints that the Grid places
development process for Grid applications consists of an on such a framework. In the current Grid scenario (and for
initial application development, testing, and validation that is purposes of this paper), components are defined to be Open
done on local resources with a subset of the program. After the Grid Services Architecture (OGSA) [2] Services deployed in
initial validation, these applications are migrated to larger OGSA containers with associated service data indicating their
systems. All the necessary pieces for integration are hand- characteristics. These components are characterized by their
crafted and weaved manually to achieve a software realization dynamic nature, implying that they might be available for
of any application, thus, achieving little reuse. Also, there is varying intervals of time, with frequent changes of their
no mature application development environment for the Grid - availability status. Also, the components tend to be
ad hoc approaches that are prevalent in the high-performance heterogeneous and are distributed in nature. Hence, a software
computing domain are used to develop Grid applications, component framework [1] for Grid must fulfil the following
Although, there are a few tools such as graphical modelers [3] requirements; a) Should be able to tackle heterogeneity in
that are available for aiding this process, it still requires a language, model, technology and architecture, etc., b) Allow a
significant amount of manual intervention. way of dynamic discovery of components, c) Provide a means

This paper describes a framework, GridFrame, for the for ascertaining non-functional attributes such as QoS of
creation and composition of distributed Grid components. individual components as well as the integrated system, and d)
Using GridFrame, programmers can reason about quality of Provide a user friendly mechanism for the system integration.

. 24 AOCOM-2004

In the current Grid scenario, a user developing a Grid translated and compiled using the above domain specific
application from pre-built components has to either write translator. While the approach promises significant
scripts in a XML representation [6], write scripts in a domain improvement in performance issues, it does not provide a
specific language [7, 91, or employ application workflow software component framework (as in [1]) per se. As a result,
diagrams and graphical modelers [3, 8]. there are no facilities for discovery of components, prediction

Conforming to the first approach, ICENI [6] provides a of QoS of individual components and integrated system. Even
component based framework for creating Grid applications though end users can develop new applications using their
from pre-built components, discovered from private as well as domain specific notations, there is a significant amount of
public meta-repositories. Whenever a new component is latency curve associated with learning a new scripting
developed, a component specification is created in terms of a language. The developed applications are invariably
CXML (Component - eXtensible Markup Language) [10] individualistic handcrafted solutions.
document, describing the component's behaviour and XCAT3 [7] is another script based framework that
interface. Implementations of the specification are placed in emphasizes distributed computing and provides Grid and Web
meta-repositories, with meta-data describing their performance Services connectivity to CCA (Common Component
characteristics and resource requirements. Based on a problem Architecture) [11] based on the OGSA. It provides a
definition, composition of these implementations to form a component based framework by which components (CCA
Grid application is describ.ed in terns of an application components and/or Grid services based on OGSA) can be
description document, which is a CXML specification of the instantiated and connected together. Each component contains
complete component composition. At runtime, the application provides-ports indicating the functionality the component
description document is converted into an active Java provides to other components and uses-ports indicating the
representation by utilizing the component specification meta- needed functionality from other components that the
data within the repository. The run-time representation is used component needs to function. As a result, each component in
to map the application requirements into available resources, the XCAT3 framework consists of port interfaces, port
based on requirements' and implementations' meta-data. implementations and an implementation. Builder services
While this approach does attempt to provide a component APIs in Java are provided, by which instances of components
based Grid framework, for satisfying a few of the can be created and composed together to form a distributed
aforementioned requirements for a Grid framework, it does application. Also, APIs for querying services of components,
not succeed on several fronts. Firstly, it does not tackle destroying component instances, and invoking methods on
heterogeneity at the component model level, only at the instantiated components are provided. While this approach is
language level. The component CXML document does not promising, the resulting applications are again handcrafted
provide a comprehensive enough QoS catalogue for solutions. Further details of XCAT3 and OGSA in particular,
comparing and matching components attributes, or for are presented in the Section IV.
prediction at the component and system level. Since CXML In an application workflow approach, for example in
does not accord the flexibility to express a application in terms CrossGrid [8], the user supplies an initial application
of a hierarchy of possible subsystems, even a small change in workflow document, detailing the components, their
the problem definition implies that the application CXML has interactions and the workflow. Here, components are CCA-
to rewritten, based, are developed independently, and are registered with

.One script based approach incorporated in GRADS [9] aims OGSA registries. A flow composer parses the user workflow
at providing domain specific high-level programming systems diagram, performs component lookups based on Port type or
for problem solving environments, by which end users can ID attributes and builds different final workflow documents
rapidly develop new applications using standard notations of with every distinct set of matched components. Finally, the
their problem domains. Here, the pre-built components are user can choose a final workflow document corresponding to
organized into optimized libraries, using a set of library design his view of the integrated system. This approach has intrinsic
and specification strategies. Also, the application library is limitations similar to the script based approaches in that it
annotated with the following details; a) program places undue importance on the expertise of the user, does not
transformation specifications detailing how program offer any QoS testing and finally results in handcrafted,
sequences can be replaced with equivalent, but more efficient individualistic solutions with restricted reusability. In Triana
sequences and b) sample calling programs illustrating typical [3], graphical modelers and toolkits are employed, which
usage patterns. In a separate step, mappings from scripting provide the user a higher level of abstraction than application
languages to library implementation language are provided. workflows. A user creates an application by dragging,
The scripting languages enable the usage of components as dropping and deleting comporfents and associated. primitive objects and define operations on them. A translator relationships in a graphical window. Here, though a greater
generator processes the enhanced library for hours or days and level of convenience than the application workflow approach
produces an executable. Using any of the allowed scripting is accorded to the user, the other workflow limitations still
languages, the user has to write an application script involving remain. Other approaches like ECSF [12] provide a distributed
operations, initiation and configurations of the primitive computing paradigm suitable for multidisciplinary Grid
objects, to construct a Grid application. The scripts are then applications, but are also limited by the same problems since

GridFrame - A Framework for Building Ouality Aware Component-based Grid Systems 25

4 I Compoiwuft

Selcted Distributed Resource Component
DiscoveryDeployment Component

A Quality Measures

.4odified
Query

QComponent
Developer

System Integrator Generative Domain Model

Assemnhkdlj StandardsIAssembled00

No

Yes System Deployment Domain Expert

Quality Validation (End) (Start)

Fig. i. GridFrame Process

their underlying principles are not based on the component semi-automated Component Based Grid System (CBGS)
paradigm. GridLab [131 does not provide a component development process involving the dynamic discovery ofcreation framework, but focuses on providing high level distributed Grid components, generation of the composedapplication toolkits that interface between user applications system and validation of quality requirementsand Grid middleware packages like Globus [2]. GridFrame differs significantly from current GridTo summarize the related approaches, many challenges such approaches by relying on an expert created generative domainas heterogeneity of components, their resource discovery and model (GDM) [15]. Experts from the particular domain createQoS prediction etc., associated with creating a component the GDM containing the details of the distributed Gridbased Grid framework have currently not been addressed application under consideration. The GDM contains details ofsatisfactorily. If Grid has to become omni-present, in both the software architecture of families of possible systems inscientific and commercial domains, these challenges need to terms of the constituent software components, descriptions ofbe effectively addressed. One possible approach to addressing the component characteristics and interactions, rules for thethese challenges is by creating a comprehensive framework, prediction and monitoring of quality of the constituent
incorporating solutions to the indicated problems. components as well as the integrated systemn A reliance on a

GDM has many advantages; a) it is created by domain experts,

Ill. GRIDFRAME APPROACH thus, end users are abstracted from domain knowledgeexpertise and required skills, b) model for componentAs a part of a related effort called UniFrame [141, the developers to create individual components, and c) it providesprinciples behind addressing some of the aforementioned rules for the composition and decomposition of componentschallenges have been developed. UniFrame is a component- with associated quality of service. A component developer forbased framework for interoperation of heterogeneous an application consults the GDM and creates componentdistributed components. In this paper, a symbiosis of the implementations using the listed specifications. It isPrinciples of UniFrame and Grid to form a component based anticipated that many such components for a particularGrid framework knownl as GridFrame is proposed. The key application with possibly different QoS, will be developed andresearch issue that GridFrame addresses is the conception of a deployed over a network.

*&26 ADCOM-2004

A domain expert creating a GDM for a Grid application has administratively defined logical domain- A domain is defined

to follow the GDM development process as outlined in [16]. as industry specific markets such as Information Filtering

The GDM development process consists of three phases; i) Services, Health Care Services, and Financial Services, etc.

domain analysis - establishing domain scope, identification of The GRDS architecture consists of the following entities: a)

functional and QoS requirements and mapping of relevant head-hunters for discovering component specifications, b)

domain concepts, ii) domain design - development of common containers for component registration, and c) components.

layered architecture for a family of possible systems and QoS Components are implemented in accordance with component

related models, and iii) ordering design - design of ordering models such as Microsoft .NET, Java RMI, CORBA, etc., and

schemes for ordering a component-based system from the are registered with the binding service of that model. The

family of possible systems. Using this process, a GDM for the binding services are modified Grid containers such as Globus

domain is developed. The GDM consists of three parts: J2EE container, .NET container etc. Headhunters periodically

general information, which includes a description for the communicate with these Grid containers and retrieve and store

modelled domain; a problem space, used by an application specifications (service data) of registered components into

programmer to specify the needs; and a solution space, which their local meta repositories. For more details about UMM

contains various models including configuration knowledge to components, service and infrastructure, please refer to [141,

provide solutions for a CBGS family. Further details of the [19] and [18] respectively.

GDM are given in the case study section. Components offer services, indicate and guarantee the

Component specifications are described by an associated quality of their services, and hence, it is necessary to facilitate

Unified Meta-component Model (UMM) [17]. UMM has three the publication, selection, measurement and validation of the

parts: a) components, b) service and its guarantees, and c) component and system QoS values. The Grid Quality of

infrastructure. A component in UMM is considered to be a Service Framework (GQoS) based on [171 provides the

tuple consisting of: a) inherent attributes - bookkeeping necessary guidelines for the component developers and system

information such as name, description, etc., b) functional developer using GridFrame. The GQoS is made up of three

* attributes - interface, pre-post conditions, algorithms, etc., c) parts: a) QoS catalogue - collection of possible QoS
non-functional attributes - supported QoS parameters and parameters such as end-to-end delay, throughput etc., b)
values with corresponding deployment environments, d) specification and measurement of QoS and c)
cooperative attributes - details of the collaborations of systems composition/decomposition models for QoS parameters. For
in which the component participates, e) auxiliary attributes - further details, please refer to [14] and [18].
special features such as mobility, security, fault-tolerance, Fig. I gives an illustration of the GridFrame process. In the
etc., and 0 deployment attributes - configuration, initialization beginning of the process, a Grid system developer, developing
information, a CBGS, for a specific application issues a query containing

The second part of the UMM is the service and associated the requirements for the CBGS. The query can comprise of

guarantee of delivering that service. While realizing a CBGS functional requirements as well as non-functional QoS

from a set of independently created components, it is requirements such as end-to-end delay, throughput, etc. The

necessary to reason about the quality of the integrated CBGS. query processing consults the GDM for the design of an

The quality of the integrated system translates into the quality appropriate CBGS and may divide the query into many sub-

of service offered by each component and of their interactions, queries, each corresponding to a single component UMM

Hence, it is necessary that a component provide a pre- specification. These sub-queries are passed to the GRDS

determined level of quality of both its functional and non- which searches for appropriate matching components. If

functional features. For doing so, the UMM requires a components are found, they are displayed to the system

component developer to specify the QoS parameters that are developer. The system developer decides on the components

applicable to a particular component and the ranges that the to be included in building the system, based on various criteria

component can guarantee when operating under a certain such as offered QoS. Also, each component provides an

execution environment [171. associated testing mechanism, which can be used to

The third part of the UMM is the infrastructure that supports dynamically test the QoS characteristics of the component.

the creation, publication, deployment, and location of the These dynamic test values can be judged against the

components and their services. This infrastructure is provided component developer's specifications of the component. After

by Grid Resource Discovery System (GRDS) based on [18], the system developer selects his choice of components, the

O which is the infrastructure that supports the creation, generation of the integrated system is carried out by the

publication, deployment, and location of the components and (iridFrame System Integrator [161 using the selected

their services. The discovery process in GRDS is scoped components.

administratively implying that it locates services within an

GndFrame - A Framework for Building Quality Aware Component-based Grid Systems 27

Cammu f ort 4) Ceate
registry" reoesentor

hfdc-orvlifetime

dassifier. Hannles 5) Create

fotr ea -vch S Instace Poie

dFi, 2interface. Crea D l /picto

neesayglefortecreation of servintgaecytm h iesies and arpeevdb h sro throuhdiprae

se terg is h e b usin s
- - obtained

i t t sicaion r n sere (R

1) g b'ant to srtce whIchtanbee
creae ali fetime 1000

info~ario Repesentor

afltf o esns service ()lsite

4) Create

other services Sereice Prec id er
with/

s dliefetimnes, Handles

Fig.a2. Creating DIFS using OGSA Grid Servicesl 1/28104

The system developer uses the principles of the space of documents to the space of user relevance values.
two-level grammar and event grammars [14] to generate the Typically, in a DIFS, more often than not, documents exist at

necessary glue for the creation of the integrated system. I fe diverse sites and are received by the user through disparate,
composition models present in the GDM can be used by the independent channels. The task of storing such documents,
system developer to predict the quality features of the before filtering is handled by a data acquisition service (DAS).
integrated system. Also, the iustromentation code present in A representation service (RS) converts these stored documents
the glue, that is created based on event grammars, allows a into structures, which can be efficiently parsed without the
dynamnic measurement of quality features of the integrated loss of vital content. A classifying service (CS) classifies these
system. These dynamic values are compared against the static stored structures using clustering algorithms on the basis of
predictions and if there is a match, the assembled Grid sya ists specified in a user profile service (UPS). The
is deployed and is ready to use. UPS is continuously updated using reinforcement learning

algorithms to reflect current user interests. A us erface
IV. CASE STUDY service (UIS) displays the ranked documents and collects user

feedback for user profile learning. A federation service (FS)Out of approaches described in Section II, using OGSA enables interconnection of DIFS systems.
services to leverage existing services to form complex

distributed solutions is the popular option now. To contrast the A. Creating a DIFS system using OGSA Grid Services
OGSA based approach with the GridFram e approach, a case I. A s m n o p eeD F e vc sn ta al b e

stud frm te dmai ofdisribued nfomaton iltrin isGrid user has to decompose his requirements to formcons .idered. Typically, a distributed information filtering a list of the previously identified Grid services that
S service (DIFS) reduces information overload by supporting would aggregate to form a DIFS Grid service. Fig- 2
I ' personalization of long term inform ation needs of a particularil u t a e an x mp e o th pr c s by w ch a s ruser or group of users with similar needs. Here, a DIFS based cnbildutae an exampl systhem urcsin Gri serices Itse

on DSIFTER [20] is considered, in which one of the authors conains thefol own a Ssstep s: n rdsrie.I
was involved. Using user profiles and periodic feedback, the contains the following steps:
DIFS rank-orders documents and performs a mapping from

. 28 ADCOM-2004

,User :Display Module :Retrieval Module :Classifier

Enter new file
location

File stored.

Enter searchS termis searchfiles0

* Classified files <

Fig. 3. Partial Sequence Diagram for Search

2. The user contacts a known registry to identify service confidence Grid systems. Also, the approach assumes a high
providers who can provide the required serNices and level of programming skill of users, which is typically not the
presents a list of requirements including cost and case with mainstream Grid users. These are serious
performance. drawbacks, particularly considering that mainstream domains

3. The handles for needed service factories that match such as enterprise applications have stringent requirements
user requirements are returned to the user. about quality and reusability of applications.

4. The user supplies instantiation details such as needed
operations, etc., and initial lifetimes for the service B. Creating a DIFS system with GridFrame
instances. For the sake of brevity, the focus is mainly on the overall

5. If agreeable, the service providers create service outline of carrying out the development of a partial GDM as
instances with user supplied details, well as the discovery mechanisms of GridFrame possibly

6. Using the service handles, the user writes application resulting in the omission of in depth details, which can be
programs for aggregating the services to form a DIFS referred to, using the associated references.
system.

Visions of enterprises using Grid Services approach to 1) GDM process: Due to space constraints, only some of the
dynamically compose new applications such as above to aspects of GDM like feature diagrams and use-cases depicting
address the specific needs of the business at any point in time the configuration knowledge of the integrated system are
have been painted. But there are several limitations with this shown here. In the GDM, the components making up the DIFS
approach, particularly in regard enterprise applications. The system are identified along with their functional characteristics
resulting new applications are basically handcrafted solutions such as required interfaces, provided interfaces, etc., and non-
with limited reuse. Any slight change in the problem fnctional characteristics such as QoS metrics. In addition to
definition, for instance using a .NET display component, if a the feature diagram, the GDM contains sequence diagrams,
previously used Java component is not available, will entail a which capture the behavioural aspects of the system. Sequence
complete rewrite of the previous solution. Also, users do not diagrams, such as Fig. 3 illustrate the interaction of
have options for any preliminary testing of the integrated components in the system with each other as well as with
application, implying that they cannot make any informed users. Fig. 5 shows a feature diagram illustrating the DIFS
decisions about the QoS of the integrated application before family of sub-systems which can be possibly built with the

O the actual deployment. In addition, most of the techniques for identified components.
discovery of components assume that the components are The details about the concept of features and the notation
homogeneous in nature and rely on simple interface matching used for describing a feature diagram are proposed in [16].
and component context dependencies, which is not sufficient The given feature diagram indicates possible architectural
enough for a process, which is a precursor for composing high alternatives for a DIFS. For example, two possible alternatives

GridFrame - A Framework for Building Ouality Aware Component-based Grid Systems 29

for a DIES could be: version (a) made up of RM, TM, RP. CL, 5.2 Functional Attributes:

SP, TI and version (b) made up of WM, RM, TM, RP, CG, 5.2.1 Function description: Act as classification server for

CL, CP, DM, SM, EM, GM, ECM, CM. As indicated earlier, documents in system

depending upon the input query presented by the system 5.2.2 Algorithm: N/A 5.2.3 Complexity: N/A

integrator, an appropriate alternative will be selected during 5.2.4 Syntactic Contract

the system development process. Each node in the feature 5.2.4.1 Provided Interface: IClassification

diagram indicates an abstract component, which will be 5.2.4.2 Required Interface: NONE

described by its corresponding UMM specification. The 5.2.5 Technology: N/A

component specification in UMM is a multi-level contract [19] 5.2.6 Expected Resources: N/A

with bookkeeping information such as component id, domain 5.2.7 Design Patterns: NONE

name, and algorithmic, technological information such as 5.2.8 Known Usage: Classification of documents
function name, algorithm name etc. For example, a partial 5.2.9 Alias: NONE

UMM-specification for a typical classifier could be: 6. Cooperation Attributes:
1. Component Name: Classifier 6.1 Preprocessing Collaborators: Representor

2. Domain Name: Information Filtration 6.2 Postprocessing Collaborators: NONE
3. System Name: InformationFilter 7. Auxiliary Attributes:

4. Informal Description: Provide classification service 7.1 Mobility: No 7.2 Security: LO 7.3 Fault tolerance: LO

for documents. 8. Quality of Service Attributes
5. Computational Attributes: 8.1 QoS Metrics: throughput, end-to-end delay

5.1 Inherent Attributes: 8.2 QoS Level: N/A 8.3 Cost: N/A 8.4 Quality Level: N/A

5.1.1 id: N/A 5.1.2 Version: version 1.0 5.1.3 Author: 8.5 Effect of Environment: N/A 8.6 Effect of Usage

N/A Pattern: N/A
5.1.4 Date: N/A 5.1.5 Validity: N/A 5.1.6 Atomicity: Yes 9. Deployment Attributes: N/A

5.1.7 Registration: N/A 5.1.8 Model: N/A

<DIFS>

Legend:

DAS - Data Acquisition Service SP - Simple Profiler CL - Classifier
WM - Wrapper Module CP - Complex Profiler UPS - User Profile System
RM - Retrieval Module IIS - User Interface Service GM - Group Manager
RS - Representer Service TI -Text Interface EM - Editing Module
TM - Thesaurus Module GUI - Graphical Interface FS - Federation System
CS - Classifying Service DM - Display Module EC'M - Economic M1odule
CG - Centroid Generator SM - Statistical Mlodule CMI - Common Module

Fig. 5. Feature Diagram of DIFS

. 30 ADCOM-2004

Once the GDM has been developed, component developers and monitoring of component performance at the

are free to develop and deploy components using their choices component level as well as system level is possible.

of technology, language, etc., according to the specifications 3. GridFrame accommodates heterogeneity by which

in the GDM. The developed concrete components have to components can be implemented in different models

strictly adhere to the GDM abstract specifications, but can be and technologies.

implemented in different technologies, algorithms etc. with 4. By providing a semi-automated framework for

corresponding QoS values. For example, one Representor composing services, GridFrame ensures that user

Module (RM) can be implemented in .NET technology using a intervention is minimized, enabling novice end users

vector space model [203 with 340 ms turnaround time while to integrate systems.

another RM can be implemented in Java RMI using a different
model with 320 ms turnaround time, with corresponding QoS V. CONCLUSION
attributes.

The proposed framework provides a semi automated
2) Discovery of components and Integration of the system. approach for building Grid systems from pre-built Grid
After the creation of the GDM and deployment of services using concepts of software engineering. Using the

components, a system developer can query for an instance of a framework, it is possible for end users to both predict and
system using a tabular graphical interface [16], containing reason about the quality of the integrated system as well as the
different options for the different possible systems. For individual services. Although a simple example is provided
example, the options could be a basic DIFS with minimal here, the principles are general enough to be applicable for
functionality incorporating instances of RM, TM, RP, CL, SP, both mainstream and research Grid projects. The development
TI and GM or an advanced DIFS with increased functionality of Grid systems involves both construction and deployment of
incorporating instances of WM, RM, TM, RP, CG, CL, CP, the system. Here, only the construction issues of a component
DM, SM, ECM, GM. For example, the system developer based Grid system using a GDM were discussed. Utilizing the
might query for a simple DIFS with QoS values such as the GDM for deployment issues such as assessing hardware
maximum permissible end-to-end delay and minimum resource requirements, selecting ideal resources, etc., is the
throughput for the system specified as 1800 ms and 400 op/s focus for current research. The GridFrame process has been

respectively. Using the decomposition model in [22], the given investigated using the Globus toolkit and the current
QoS requirements for the whole system are decomposed into UniFrame infrastructure by means of trivial examples. While
the QoS requirements for each of the constituent components. the results are promising and show that such a process is
By means of the GDM and the QoS requirements, for each of plausible, validation on 'a realistic, large scale scientific or
the components making up the chosen system, a query is mainstream Grid application is one of the key research goals
created. These queries are presented to GRDS for discovering for current and future efforts.
concrete instances of the components, which can match the
requirements. REFERENCES

When the GRDS receives the requests, a subset ofheadhunters in the specified domain (in this case, distributed Ill C. Szyperski, D. Gruntz,, S. Murer, Component Software - Beyond
Object-Oriented Programming, Second Edition. Boston: Addison-

information filtering) is contacted for concrete instances of the Wesley/ACM Press, 2002.
components. These headhunters search their local meta- [21 I. Foster, C. Kesselman, J. Nick, S. Tuecke, "The Physiology of the

repositories and perform syntax, semantic and QoS matching Grid: An Open Grid Services Architecture for Distributed Systems

of the stored specifications with the queries. Each query has an Integration," Open Grid Service Infrastructure WG, Global Grid Forum,
June 22, 2002.

associated timestamp, depending on which the queries can be [31 L. Taylor, M. Shields, 1 Wang, and R. Philp, "Distributed P2P
propagated to other headhunters. For details about selection, computing within triana: A galaxy visualization test case," IPDPS, 2003.
propagation and matching algorithms of headhunters, see [18). [41 G. Allen, W. Benger, T. Goodale, H. Hege, G. Lanfermann et at, "The

As explained in the GridFrame process, the system developer Cactus Code - A Problem Solving Environment for the Grid:'
Proceedings of the 9 th IEEE Int'l. Symposium on High Performance

chooses from among the listed components on basis of QoS Distributed Computing, Pittsburgh. 2000.
values, (available from the service data), and uses the [51 D. Thain, T. Tannenbaum, and M. Livny, "Condor and the Grid", Grid

GridFrame System Integrator to test and build the integrated Computing: Making The Global Infrastructure a Reality, John Wiley,
system.- 2003.

brtef. c[61 N. Furmrento, A. Mayer, S. McGough, S. Newhouse, T. Field and J.
A brief comparison of the two approaches suggests the Darlington, "An Integrated Grid Environment for Component

following: Applications," Second International Workshop on Grid Computing

I. As opposed to handcrafting, the use of a GDM in 2001, pp. 26-37, November 2001.
GridFrame enables the creation of standardized [7] [71 S. Krishnan, and D. Cannon, "XCAT3: A Framework for CCA

Components as OGSA Services," Proceedings of HIPS 2004, April
solutions by which the reusability of individual 2004.
components as well as the integrated system is [81 M. Bubak, K. Gorka, T. Gubala, M_ Malawski, K. Zajac, "Automatic
improved. Flow Building for Component Grid Applications," Fifth International

2. Quality of service theme is maintained throughout the Conference on Parallel Processing and Applied Mathematics, 2003, in

GridFrame process, as a result of which predicting press.

SGnidFrame - A Framework for Building Quality Aware Component-based Grid Systems 31

19] K. Kennedy, B. Broom, K. Cooper, J Dongarra, R. Fowler, D. Gannon 114] K. Czamecki. and U. Eisenecker, Generative Programming: Methods.
et al, "Telescoping Languages: A Strategy for Automatic Generation of Tools. andApplications. Addison-Wesley, 2000.
Scienti c Problem-Solving Systems from Annotated Libraries," JPDC, [15) Z. Huang. The UniFrame System-level Generative Programming
Vol. 61, No. 12, pp. 1803-1826, Dec 1, 2002. Framework. MS thesis, IUPUI, CIS Department, 2003.

[10] N. Furmento, A. Mayer, S. McGough, S. Newhouse, T. Field and J. [16] G Brahnmath, R. Raje, A. Olson, B Bryant, M. Auguston, C. Burt,
Darlington, "Optimisation of Component-based Applications within a 117] "A Quality of Service Catalog for Software Components," Proceedings
Grid Environment," SuperComputing 2001, Nov 2001. of the Southeastern Software Engineering Conference. Huntsville,

[11] D. Gannon, S. Krishnan, L. Fang, G. Kandaswamy, Y. Simnihan, and A. Alabama, 2002.
Slominski, "On Building Parallel and Grid Applications: Component 118] N. Siram, "An Architecture for the UniFrame Resource Discovery
Technology and Distributed Services," CLADE, 2004. [12] P. Bangalore, Service," MS thesis, IUPUI, CIS Department, 2002.
"An Open Framework For Developing Distributed Computing [191 A. Beugnard., J. Jezequel, N. Plouzeau. and D. Watkins, Making
Environments For Multidisciplinary Computational Simulations," PhD Components Contract Aware. IEEE Computer, 32(7):38-45, July 1999.
thesis, Mississippi State University, May 2003. [20] R. Raje, M. Qiao, S. Mukhopadhyay, M. Palakal, J. Mostafa, "SIFTER-

[12] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser et al, "The Grid If: A Heterogeneous Agent Society for Information Filtering,"
Application Toolkit: Towards Generic and Easy Application Proceedings of ACM Symposium on Applied Computing, SAC'01, pp:
Programming Interfaces for the Grid," Unpublished. 121-123, Las Vegas, Nevada, 2001.

113] R. Raje, M. Auguston, B. Bryant, A. Olson, C. Burt, "A Unified [211 C. Sun, "QoS Composition and Decomposition Model in UniFrame,"
Approach for the Integration of Distributed Heterogeneous Software MS thesis, IlJPUI, CIS Department, 2003.
Components," Proceedings of the 2001 Monterey Workshop, pp. 109-
119, Monterey, California, 2001.

p

p

4

4r
Challnges nd Prctice

ef,

o0n~i

oat
hna

68 Olson, Raje, Bryant, Burt and Auguston

ChapterIV

UniFrame:
A Unified Framework for

Developing
Service-Oriented,

Component-Based Distributed
* Software Systems

Andrew M. Olson Rajeev R. Raje
Indiana University Purdue University, Indiana University Purdue University,

USA USA

Barrett R. Bryant Carol C. Burt
University of Alabama at Birmingham, University of Alabama at Birmingham,

USA USA

Mikhail Auguston
Naval Postgraduate School, USA

Abstract

This chapter introduces the UniFrame approach to creating high quality computing
systems from heterogeneous components distributed over a network. It describes how
this approach employs a unifyingftameworkfor specifying such systems to unite the
concepts of service-oriented architectures, a component-based software engineering
methodology and a mechanism for automaticallyfinding components on a network in
order to assemble a specifiedsystem. UniFrame employs aformalspecification language

to define the components and serve as a basis for generating glue/wrapper code that
connects heterogeneous components. It also provides a high level language for the

Copyright 0 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

Dermission of Idea Group Inc. is prohibited-

UniFrame 69

system developer to use for inserting code in a createdsystem to validate it empirically

and estimate the quality of service it supports The chapter demonstrates how a

comprehensive approach, which involves thepracticing community as well as technical

experts, can lead to solutions of many of the difficulties inherent in constructing
distributed computing systems.

Introduction

The architecture of a computing system family can be represented by a business model

comprising a set of standard, platform independent models residing in a service layer,

each of which is related to a platform specific model that corresponds to one or more

specific realizations of the service. A system is realized by assembling the realizations

accordingto the specified architecture. This Service-Oriented Architecture offers many

advantages, such as flexibility, in constructing and modifying a computing system.
Because business requirements can change rapidly, both the services making up a

business model and their platform specific realizations may need to change rapidly in

response. With an agile mechanism to trace out an appropriate architecture, the devel-

opment engineer can react quickly by building a modified realization of the system.

Nevertheless, there are many practical issues that make effecting this process difficult.

For example, an environment in which this approach has greatest appeal is typically

distributed and heterogeneous. This makes the mapping of a system's platform indepen-

dent model to a platform specific model (Object Management Group, 2002) quite complex
and subject to variation.

This chapter describes the basic principles of the UniFrame Project, which defines a
process, based on Service-Oriented Architecture, for rapidly constructing a distributed

computing system that confronts many of these inherent difficulties. UniFrame's basic
objective is to create a unified framework to facilitate the interoperation of heterogeneous

distributed components as well as the construction of high quality computing systems

based on them. UniFrame combines the principles of distributed, component-based

computing, Model-Driven Architecture, service and quality of service guarantees, and
generative techniques.

Though better than handcrafting distributed computing systems, developing them by

composing existing components still poses many challenges. A comprehensive treat-

ment of these and the corresponding solutions that UniFrame proposes exceeds the

scope of this chapter, so it sketches the features of UniFrame that are most related to the

book's service-oriented engineering theme along with references to further reading.

Background

Despite the achievements in software engineering, development of large-scale, decen-

tralized systems still poses major issues. Recent experience has demonstrated that the

Copyright 0 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

70 Olson, Raje, Bryant, Burt and Auguston0
principles of distributed, component-based engineering are effective in dealing with

them. Weck (1997), Lumpe, Schneider, Nierstrasz, and Achermann (1997), and the works

of Batory et al-, for example, Batory and Geraci (1997), concern the composition of

components. The approach of Griss (2001) to developing software product lines is similar

to UniFrame's, except that UniFrame avoids descending to code-fragment-sized compo-

nents. Brown (1999) surveys component-based system development, whereas Heineman

and Councill (2001) and Szyperski, Gruntz, and Murer (2002) provide extensive discus-

sions of different aspects.

Heineman and Councill (2001) provide a general definition of a component model. Many
different models for distributed, component-based computing have been proposed and

implemented. Among these, J2EETM (Java 2 Enterprise Edition) and its associated

distributed computing model (Java-RMI), CORBA® (Common Object Request Broker

Architecture), and NET® have achieved the greatest acceptance. Typically, each

prevalent model assumes the presence of homogeneous environments; that is, compo-

nents created using a particular model assume that any other components present adhere

to the same model. For example, the white paper on Java Remote Method Invocation

(2003) describes RMI as an extension of Java's basic model to achieve distributed

computation, assuming, thus, an environment consisting of components developed

using Java and communicating with each other using method calls. Schmidt (2003)

provides an overview of CORBA, which indicates that CORBA does provide a limited

independence from the components' development language and deployment platform by

specifying components with an interface definition language. This permits implementa-

tion in any languages for which mappings with the interface definition language exist.

Again, an implicit assumption is that, typically, aCORBA component will communicate
with another CORBA component. Microsoft's .NET is intended as a programming model

for building XMLTM-based Web services and associated applications. It provides

language independence with an interface language and a common language runtime

(Microsoft .NET Framework, 2003). The implicit assumption ofhomogeneity still holds.

UniFrame

Current approaches for tackling heterogeneity are adhoc in nature, requiring handcrafted

software bridges, so have many drawbacks. It is difficult to make components of different

models interoperate, and handcrafting is known to be error prone. Moreover, depen-

dence on a single model meshes poorly with the grand notion of a component (or services)

bazaar over a distributed infrastructure, as the success of such a bazaar requires local

autonomy for deciding various policies, including the choice of the underlying model.

Thus, there is a need for a framework, such as UniFrame, that will support seamless

interoperation of heterogeneous, distributed components. UniFrame consists of:

the creation of a standards-based meta-model for components and associated

hierarchical setup for indicating the contracts and constraints of the components;

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

UniFrame 71

* an automatic generation of glue and wrappers for achieving interoperability;

* guidelines for specifying and verifying the quality of individual components;

* a mechanism for automatically discovering appropriate components on a net-
work;

a methodology for developing distributed, component-based systems with ser-

vice-oriented architectures; and

mechanisms for evaluating the quality of the resulting component assem-
blages.

UniFrame creates more general distributed systems than the point-to-point interactions
of current Web services and also emphasizes determining the Quality of Service (QoS)
during system assembly. For pragmatic reasons, UniFrame provides an iterative, incre-
mental process for assembling a distributed computing system (DCS) from services
available on the network that permit selecting among alternative components during
system construction. In order to increase the assurance of a DCS, UniFrame employs
automation, to the extent feasible, in the processes of locating and assembling compo-
nents, and of component and system integration testing. The ICSE 6th Workshop on
Component-Based Software Engineering: Automated Reasoning and Prediction (Cmkovic,
Schmidt, Stafford & Wallnau, 2003) focused on automated composition theories in
constructing a DCS. Although automation is a goal of UniFrame, it presently focuses on
the more practical, implementation aspects.

Unified Meta-Component Model (UMM)

Because future service-oriented systems will consist of independently developed
components adhering to various models, a meta-model that abstracts the features of
different models, enhances them and incorporates innovative concepts, is necessary in
order to facilitate their creation. Raje (2000) and Raje, Auguston, Bryant, Olson, and Burt
(2001) describe a central concept of UniFrame, the Unified Meta-component Model, that
does this. It consists of three parts: (a) components, (b) service and its guarantees, and
(c) infrastructure. These are not novel separately, but their structure, integration, and
interactions form the UMM's distinguishing features. Components in the UMM have
public interfaces and private implementations, which may be heterogeneous. Each
interface comprises multiple levels. In addition to emphasizing a component's functional
responsibilities (or the services it offers), the UMM requires component developers to
advertise and guarantee a QoS rating for each component. The UMM's infrastructure
supplies the environment necessary for developing, deploying, publishing, locating,
assembling, and validating individual components and systems of components. The
following subsections expand upon these concepts.

Copyright 0 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc- is prohibited.

72 Olson, Raje, Bryant, Burt and Auguston

Component

The UMM defines a component as a sextuple consisting of the attributes (inherent,
functional, nonfunctional, cooperative, auxiliary, deployment). This view of a compo-
nent conforms to the definition of Szyperski, Gruntz, and Murer (2002). The inherent
attributes contain the bookkeeping information about a component, such as the author,
the version, and its validity period. The functional attributes of a component contain its
interface, along with the necessary pre- and post-conditions, and component model of
any associated implementation. They also indicate related details, such as algorithms
used, underlying design patterns and technology, and known usages. The nonfunc-
tional attributes represent the QoS parameters supported by the component, along with
their values that the component developer guarantees in a specific deployment environ-
ment. These attributes may also indicate the effects of the deployment environment and
usage patterns on the QoS values. The cooperative attributes describe how components
actively collaborate, exchanging services. The auxiliary attributes exhibit other charac-
teristics, such as mobility, various security features, and fault tolerance that the
components may possess. A component needs deployment rules, specified in the
deployment attributes so that it can be configured, initialized, and made available on a
network.

Service

As described by Raje (2000), this part of the UMM consists of the computational tasks
and guarantees that a component performs. To realize a DCS from a set of independently
created components, the system integrator needs to reason from the service assurance
of each component to obtain the assurance of the integrated DCS. Hence, a component
must provide a predetermined level of assurance of both its functional and nonfunctional
features. Various techniques, such as formal verification, have been proposed for
reasoning about the functional assurance of a DCS. Therefore, the UMM assumes the
use of an appropriate mechanism for functional assurance. The UniFrame research
focuses on assuring the nonfunctional features of components and the integrated
system because many existing application domains (multimedia, critical systems, and so
forth) depend not only on correct functionality but also on how well it is achieved.
UniFrame provides a mechanism for the component provider to specify the QoS
parameters that are applicable to a provided component and determine the ranges that
the component can guarantee.

Table I shows the UMM type specification of a component, Validation Server, for
validating user accesses within the application domain of document management. In the
advertised description of a corresponding implementation, the component provider
would supply the actual values for various fields (such as N/A in Table 1). For example,
the specification of a component that implements Validation Server would contain
details, such as the URL where the component is deployed (id), the guaranteed values
for the throughput and end-to-end delay, and the required deployment environment. The

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UniFrame 73

Table 1. UMM type specification of a component

Abstract Component Type: ValidationServer

I- Component Name ValidationServer
2. Domain Name: Document Management
3. System Name. DocumentManager
4. Informal Description: Provide the user validation service.
5. Computational Attributes:

5.1 Inherent Attributes.
5 H I id: N/A
5.1.2 Version: version 1.0
5.1.3 Author: N/A
5.1.4 Date N/A
5.1.5 Validity: N/A
5.1.6 Atomicity: Yes
5.1.7 Registration: N/A
5.1.8 Model: N/A

5.2 Functional Attributes:
5.2.1 Function description: Act as validation server for users in the system.
5.2.2 Algorithm: N/A
5.2.3 Complexity: N/A
5.2.4 Syntactic Conti-act
5.2.4. Provided Interface: IValidation
5.2.4.2 Required Interface: NONE
5.2 5 Technology: N/A
5.2.6 Expected Resources: N/A
5.2.7 Design Patterns: NONE
5.2.8 Known Usageý Validation of user access
5.2.9 Alias: NONE

6. Cooperation Attributes:
6. I Preprocessing Collaborators: Users'Terminal
6.2 Postprocessing Collaborators- NONE

7. Auxiliary Attributes:
7.1 Mobility: No
7.2 Security: LO
7.3 Fault tolerance: LO

8. Quality of Service Attributes
8.1 QoS Metrics: throughput, end-to-enddelay
8.2 QoS Level: N/A
8.3 Cost: N/A
8.4 Quality Level: N/A
8.5 Effect of Environment: N/A
8.6 Effect of Usage Pattern: N/A

9. Deployment Attributes: N/A

specification associated with each implemented component is published when it is
deployed on the network. The UMM specification of a component enhances the concept
of a multilevel contract for components proposed by Beugnard, Jezequel, Plouzeau, and
Watkins (1999) because it includes other details, such as bookkeeping, collaborative,
algorithmic and technological information, and possible levels ofservice with associated
costs and effects of different environmental factors on the QoS parameters.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited-

0
74 Olson, Raje, Bryant, Burt and Auguston

Infrastructure

UniFrame assumes the presence of a publicly accepted knowledgebase that contains
information, such as the component types needed for a specific application domain, the
interconnections and constraints that make up the design specification of each compo-
nent system in a domain, and rules for QoS calculations. Experts, such as standards
organizations' task forces, create the UMM specifications for the components of each
application domain of the knowledgebase. The UMM specifications of the component
types are publicly distributed so that component developers can supply implementa-
tions that adhere to them.

UniFrame's Infrastructure consists of the System Generation Process, Resource Discov-
ery Service (URDS), and Glue and Wrapper Generator. The first employs the
knowledgebase to carry out the steps in creating a component system. It invokes the
URDS to locate the components in the network the system requires and validates the
product using an iterative process. The URDS provides mechanisms for components to
publish their UMM specifications and for hosting the services on distributed machines,
receives appropriate queries for locating the deployed services, and performs the
selection of necessary components based upon specified criteria. It invokes the Glue and
Wrapper Generator, which accommodates the heterogeneity across components, incor-
porates the mechanisms necessary to measure the QoS, and configures the selected
services. Subsequent sections will provide more details about these.

Service-Oriented Architecture

In order to provide flexible, efficient support to the process of creating a DCS, UniFrame
organizes its knowledgebase according to the concepts of Model-Driven Architecture
proposed by the Object Management Group (2002) and Business Line Architecture
proposed by the Enterprise Architecture SIG (2003a). UniFrame's UMM provides an
underlying framework for this organization. The domain elements in the top tier of the
architecture correspond to different business contexts, or lines. A context consists of
a class of related business practice domains (such as, retail grocery, retail hardware,
construction supply, wholesaler), which are located in the next tier down. Conceptually,
elements on one level can share an element on another (healthcare and construction can
share inventory), which differs in how it performs similar operations in different contexts
(that is, the element comprises a set of variants). The various, hierarchically organized
elements that contribute detail to the definition of a business context constitute its
Business Reference Model, discussed in Succeeding with Component-Based Architec-
ture by the Enterprise Architecture SIG (2003b). This takes the form of a tree, whose root
represents the context in the architecture under consideration. Business domain experts
perform requirements analysis and model the business contexts for which it is desired
to construct DCSs. The Business Reference Models they derive and place in the
knowledgebase define the space of problems UniFrame can solve.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc- is prohibited-

0
UniFrame 75

For each Business Reference Model, software engineers construct design models in
various ways to implement DCSs that satisfy its requirements. A design model' is
expressed, frequently in Unified Modeling Language (UML®) (Rumbaugh, Jacobson &
Booch, 1999), in terms of tiered layers of components, each component offering a defined
set of services. Several Business Reference Models can share components. A compo-
nent in one tier can be composed (or use of the services) of components on a lower tier.
Thus, a component has two definition forms in the knowledgebase:

"* a specification of its abstract properties as a type, as in Table 1, or

"* a design specification, following UMM standards, which directly references the
components and refined design specifications that it uses.

The former is called an abstract component, which the UniFrame System Generation
Process considers to be available with no construction necessary. The second form is
called a compound component. The process will attempt to construct it from its design.
A design specification that defines a realization of a Business Reference Model forms
a Service Reference Model for it. It provides a vehicle for realizing the Model-Driven
Architecture's mapping from a platform-independent model to a platform-specific model.
The Service Reference Models also form part of UniFrame's knowledgebase.

In order to construct DCS solutions for a significant space ofproblems, the knowledgebase
must contain matching (Business Reference Model, Service Reference Model) pairs for
each problem variation anticipated. These can be organized efficiently by structuring
related Business Reference Models in feature models according to the optional features
that they exhibit and related Service Reference Models according to variation point
archetypes that show which design variants are available. The experts create a domain-
specific language based on the distinguishing features and variation points in the
models. Then, users of the System Generation Process employ the language to specify
their requirements. The following example illustrates the knowledgebase's organization.

Case Study

Suppose domain experts want to create a knowledgebase that includes the business
context consisting of users who manage documents. The users' contact with the
supporting system is via the use case Manage Documents, which includes Validate
User. The use cases Create Document, Delete Document, List Documents, Store
Document, and Get Document all extend Manage Documents. The last in this list includes
Lock Document, whereas the others include Unlock Document. From the requirements
these express, the domain experts identify three subsystems comprising the system: one
for user validation, one for managing the documents themselves, and one for user
interaction. The experts write a domain model for this system containing these three

* subsystems.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited-

76 Olson, Raje, Bryant, Burt and Auguston

Suppose the experts decide the users may want to choose between two types of

document manager systems: a standard document manager and a deluxe one that
provides extended persistence support. They represent these options in a simplified

feature diagram for the document manager, as shown in Figure I. Clear small circles
indicate optional features, whereas an arc indicates an exclusive OR choice. In more

general feature diagrams (Griss, 2001), options of a node can be chosen as any

combination ofelements of a subset of the node's children. A feature diagram carries no
information about how its alternatives might be associated with elements in the domain
model of their parent node. It is an efficient mechanism for representing alternatives; the
domain models are essential for representing the associations among elements in the

models and the constraints on them. The domain model for the standard document
manager consists of only one domain element, Document Server. The domain model for
the deluxe document manager consists of two domain elements, Deluxe Document Server
and its associated Document Database for persistence. Because there are just two
alternatives in the feature diagram, there arejust two Business Reference Models in this
example. More generally, there will be as many as there are combinations permitted by
the various feature diagrams present in the knowledgebase.

Software engineers experienced in the domain of the business context (document
management here) develop design models for these two Business Reference Models.
They create a service-oriented architecture of abstract components so that domain
models map to component-based design models. Figure 2 shows the Service Reference
Model, Standard Document System, for the Business Reference Model of the Standard
Document Manager for this example. The Service Reference Model, Deluxe Document
System, for the Deluxe Document Manager is identical, with the addition of a Database
component associated with the Document Server, where the cardinality allows an
arbitrary, positive number of Database units to be present. The Service Reference
Models include the details defining the associations among the components. These
might be views consisting of UML collaboration diagrams. This information is used to
determine the entries in the UMM abstract component specifications and the interrela-
tions of the components' interfaces. The specification for the abstract component,
Validation Server, appeared in Table 1.

Suppose that the software engineers decide that two implementations of the standard
document manager are possible, one in which the components adhere to .NET and the

Figure 1. Feature diagram for the document management system

p OF

D M
Legend:

OF: Other Features
DM: Document Manager
SDM: Standard Document Manager

SDM DDM DDM: Deluxe Document Manager

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UniFrame 77

Figure 2. Service reference model for the standard document system

UT Legend:

* 1. UT: Users' Terminal
VS: Validation Server

JDS DS: Document Server

other to CORBA. They indicate this choice by a design model, labeled Standard

Document System, augmented by variation point information that specifies the choice
of one of these two technologies for the associations in Figure 2, such as in OCL (Warmer

& Kleppe, 2003), as shown:

context Standard Document System

inv: technology = ".NET' or technology = 'CORBA'

Because the system consists of more than two components, the engineers have other

combinations possible. For example, the Users' Terminal/Validation Server association
may be in .NET technology, and the Document Server may be in CORBA technology,

* implying the need for an appropriate bridge.

UniFrame System Generation Process

The essential steps in UniFrame's process of constructing a DCS to solve a problem
appear in Table 2. Once the UniFrame knowledgebase is available, a system developer
can pose a statement of requirements for a DCS that solves a problem within its

application domain. This analysis task forms step (1) in Table 2. For the case study in

the previous section, the statement of requirements might be:

Create a Document Management System having a Standard Document Manager.

In step (2), the term Document Management System of the example requirements
statement identifies the business context, so the stated problem lies within the domain

the knowledgebase represents. The corresponding system model shows there are two
alternatives for the Document Manager, which the feature model displays in Figure 1.

The qualifying requirement, Standard, resolves this ambiguity, which completes step (2).

The resulting Business Reference Model maps directly in the knowledgebase to the two

alternative platform-specific Service Reference Models for the entire system shown in

Copyright 0 2005, Idea Group Inc- Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

78 Olson, Raje, Bryant, Burt and Auguston

Table 2. Steps in the UniFrame System Generation Process

Steps Activities

I State the requirements the DCS must satisfy in the knowledgebase's
terminology.

2 Identify a Business Reference Model that represents these.

3 Identify each Service Reference Model specifying a system of
abstract components that satisfies the Business Reference Model.

4 Obtain concrete implementations of the abstract components.

5 Assemble the concrete components into a DCS according to each
Service Reference Model, so that it meets the specified
requirements.

6 Test the DCS against the requirements and exit if satisfactory;
otherwise, return to step (1) to modify the requirements.

Figure 2, in which the components are either all .NET or all CORBA. This completes
step (3).

Continuing to step (4), the System Generation Process collects the UMM type specifi-

cations of all the abstract components involved in each of the two Service Reference
Models and sends them in a query to the UniFrame Resource Discovery Service. This
searches the network for implemented components whose UMM descriptions satisfy the
type specifications.

Step (5) employs the design information in a Service Reference Model to construct a DCS
with the components found. If the appropriate implementations are available on the

network, the request for a Standard Document Manager in the example will yield two
DCSs, one with .NET technology and one with CORBA technology. Ifno .NET implemen-
tation of a Validation Server is found, then only the CORBA DCS will be constructed.

Typically, a developer understands the requirements poorly at the initiation of the
System Generation Process. Therefore, it is imperative to evaluate empirically the
consistency of the characteristics of a generated DCS with the perceived requirements
and make modifications as necessary. This motivates having step (6) in Table 2. Such
iterative development provides a mechanism for the developer to validate the outcome
of the process and determine empirically the ranges within which its QoS attributes vary.
This helps to assure a higher quality product. The process allows two levels of testing.

The simplest is black box (or acceptance) testing of the DCS based on only the stated
requirements. The developer supplies a test harness and plan for this. The other is white
box (or integration) testing, again based on the developer's test plan. In this case, the
design of the DCS serves as a guide for inserting instrumentation code between the

components in the DCS. At runtime, this code reports the behavior of the DCS, giving

the developer a view into its internal operation. The section on the measurement of QoS
discusses a mechanism for inserting this instrumentation easily.

In case there are several Business or Service Reference Models in the knowledgebase
that satisfy the developer's requirements if step (2) or (3) of the process provides

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UniFrame 79

feedback, allowing the developer to introduce requirements incrementally soas to reduce
these alternatives, then the process becomes an efficient way to construct the needed
type of DCS. Thus, the System Generation Process supports the iterative, incremental

development paradigm that modem software engineering practices have found produc-
tive.

UniFrame Resource
Discovery Service (URDS)

Once components and their UMM descriptions have been deployed on the network, they
are ready for discovery in the UniFrame System Generation Process. The URDS executes
this process. Siram et al. (2002) discuss its architecture, shown in Figure 3.

The URDS architecture comprises: HeadHunters (HHs), Internet Component Broker
(ICB), Meta-repositories (MRs), and components.

Components are implemented according to some component model, as described earlier,
and registered with the model's binding service. For example, the Java-RMI components
are registered with the Naming service provided by the Java-RMI framework. An

Figure 3. UniFrame Resource Discovery System (URDS)

_ ;1-••-11±

Copyright © 2005. Idea Group tnc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

80 Olson, Raje, Bryant, Burt and Auguston

advantage of this is that it does not burden the component providers because, to deploy
their implementations, they must register them anyway. The HHs have the sole respon-
sibility of performing matchmaking operations between registered components and
requested specifications. Each HH has an MR, which serves as a local store. An HH is
constantly discovering newly implemented components and storing their UMM speci-
fications in its MR. Anytime an HH receives a query fora component type, it first searches
its MR. If it finds a match, it returns the corresponding component as a result. If not, it
propagates the query to other HHs in the system.

The ICB is analogous to the object request broker (ORB) in other architectures. Unlike
the ORB, which only allows interoperation between components having heterogeneous
implementations, the Internet component broker allows interoperation between compo-
nents with different component models. As Figure 3 shows, the Internet component
broker consists of domain security manager (DSM), query manager (QM), link manager
(LM), and adapter manager (AM). The DSM is responsible for enforcing a security
structure on the URDS. It authenticates the HHs and allows them to communicate with
different binding mechanisms (registries). The QM interfaces with the System Generation
Process. It receives a query consisting of a collection of UMM component types, passes
it to the HHs, and returns the results. The LM allows a federation of URDSs to be created
in order to increase the component search space. The AM locates adapter components,
such as bridges that allow interoperation of different component models, and passes
them to the Glue and Wrapper Generator.

A prototype of URDS has been implemented using the Java-RMI and .NET technologies.
Many experiments have been performed to measure its performance (Siram et al., 2002).
These demonstrate that URDS scales upward, but the details extend beyond this
chapter's scope.

Industry and academia have proposed and implemented many distributed resource
discovery and directory services. Examples that Siram et al. (2002) describe include
WAIS, Archie, Gopher, UDDI, CORBA Trader, LDAP, Jini, SLP, Ninf, and NetSolve. Each
has its own characteristics and exhibits some similarity with URDS. The distinguishing
features of URDS are its treatment of heterogeneity and its purpose to support creating
heterogeneous integrated systems, not just to discover services.

UniFrame Quality of
Service Framework (UQoS)

Components offer services and indicate and guarantee the quality of their services.
Therefore, it is necessary to facilitate the publication, selection, measurement, and
validation of component and DCS QoS values. The UniFrame Quality of Service
Framework, described by Brahnmath (2002); Sun (2003); and Raje, Bryant, Olson,
Auguston, and Burt (2002), provides necessary guidelines for the component developers
and system integrators using UniFrame. The UQoS consists of three parts: QoS catalog,

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc- is prohibited.

UniFrame 81

composition/decomposition models for QoS parameters, and specification and measure-
ment of QoS. The reader is referred to the references above for the first two because the
details are extensive.

To prepare the UMM description of a component to be publicized, the component
developermust measure empirically the QoS parameters in the corresponding UMM type
specification. The QoS catalog provides model definitions and formulas to assist in this.
Some parameters are static in nature (like reliability), while some are dynamic (like end-
to-end delay). If the parameter is static and characterizes a system of components, then
its value can be determined from the components' parameter values. Otherwise, its value
must be determined empirically.

Evaluation of QoS Parameters

UniFrame uses the principles of event grammars for measuring parameters empirically.
Event grammar, as described by Auguston (1995), forms the basis for system behavior
models. An event represents any detectable action during execution, such as a statement
execution, expression evaluation, procedure call, and receiving a message. It has a
beginning, end, and duration (a time interval corresponding to the action of interest).
Actions (or events) evolve in time, and system behavior represents the temporal
relationship among actions. This implies a partial ordering relation for events, as Lamport
(1978) discussed.

System execution can be modeled as a set of events (event trace) with two basic relations:
partial ordering and inclusion. The event trace actually is a model of the system's
temporal behavior. In order to specify meaningful system behavior properties, events
must be enriched with attributes. An event may have a type and other attributes, such
as duration, source code related to the event, associated state (that is, variable values
at the event's beginning and end), and function name and returned value for function
call events.

A special programming language, FORMAN, for computations over event traces greatly
facilitates measuring parameters empirically. As described by Fritzson, Auguston, and
Shahmehri (1994) and Auguston (1995), it is based on the notions of the functional
paradigm, event patterns, and aggregate operations over events.

The execution model of a component (or a system of integrated components) is defined
by an event grammar, which is a set of axioms that describes possible patterns of basic
relations between events of different types in a program execution trace. It is not intended
to be used for parsing actual event traces. If an event is compound, the grammar describes
how it splits into other event sequences or sets. For example, the event execute-
assignment-statement contains a sequence of events evaluate-right-hand-part and
execute-destination.

The rule A :: (B C) establishes that, if an event a of the type A occurs in the trace of a
program, it is necessary that events b and c of types B and C, also exist, such that the
relations b IN a, c IN a, b PRECEDES c hold. For example, the event grammar describing

Copyright © 2005, Idea Group Inc- Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

82 Olson, Raje, Bryant, Burt and Auguston

the semantics of an imperative programming language may contain the following rule (the

names, such as execute-program and ex-stmi in the grammar denote event types):

execute-program :: (ex-stmt *)

This means that each event of the type execute-program contains an ordered (w.r.t.

relation PRECEDES) sequence of zero or more events of the type ex-stmt. For the function

call event, the event grammar may provide the following rule:

func call:: (param *) (ex-stmt *)

This event may contain zero or more parameter evaluation events followed by statement

executions.

Example of Evaluating Turn-Around Time

If the event type component call corresponds to the whole component call event and

request denotes the event for a single request (the time interval from the request's

beginning to its completion), then the following FORMAN formula specifies the mea-

O surement of the turn-around time:

FOREA CH a: session FROM executeprogram

SAY ('Turn-around Time for a session is '

SUM[b: request FROM a APPLY bduration]

/ CARD[request FROM a])

Similar rules can be specified for any other dynamic QoS parameters or related compu-

tations. Thus, the principles of event traces provide a mechanism to validate empirically

the QoS values for a component and for an integrated system of components.

Interoperability Using the
Glue and Wrapper Generator

For interoperation of heterogeneous distributed components, it is necessary to con-
struct glue and wrapper code to interconnect the components. Because a project

objective is to achieve high quality systems, a goal is to automatically generate the glue/

wrapper code. In order to achieve this, there should be formal rules for interconnecting

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

UniFrame 83

components from a specific application domain as well as integration of multiple
technology domains, that is, component models. UniFrame uses the Two-Level Grammar
(TLG, also called W-grammar) formal specification language (Bryant & Lee, 2002) to
specify both types of rules. The TLG formalism is used to specify the components
deployed under UniFrame and also the generative rules needed for system assembly. The
output of the TLG will provide the desired target code (for example, glue and wrappers
for components and necessary infrastructure for the distributed runtime architecture).
The UMM formalization establishes the context for which the generative rules may be
applied. Bryant, Auguston, Raje, Burt, and Olson (2002) provide further details about the
glue/wrapper code generation rules, including a discussion of how the Quality of Service
validation code is inserted into the glue code. The general principle is that for each QoS
parameter to be dynamically verified, the glue code is instrumented according to the
event grammar rules described earlier.

Future Trends

The concept of Business Reference Models "is meant to provide the foundation for
common understanding of business processes across the Federal government in a
service-oriented manner," enabling an agency to define an enterprise architecture as
mandated by law (Enterprise Architecture SIG, 2003). A significant sector of industry is
involved in establishing standards and guidelines on how to enable successful enter-
prise architecture. The component-based architecture of UniFrame's knowledgebase
closely follows these guidelines, incorporating the concepts of Object Management
Group's (2002) Model-Driven Architecture as an integral part. Consequently, UniFrame
is working toward the realization of an operational framework for enterprise architecture
and is a source of feedback into the activities necessary.

Many existing component models provide the necessary mechanisms for describing the
functional aspects of components but not for the QoS aspects. Standards organizations
have recently started to address this weakness. For example, in the fall of 2000, the OMG
began issuing a number of Requests for Proposals for UML profiles for modeling QoS
in several contexts. UniFrame is addressing some of these QoS issues and is making
efforts (via presentations to different OMG task forces) to ensure that its research is
aligned with emerging industry standards.

The creation of the Business Line and Service-Oriented knowledgebase will largely
continue to be a human endeavor aided by CASE tools because humans determine what
constitutes the problems they must solve. However, the System Generation Process
could be accomplished mostly automatically for any problem in a given knowledgebase.
The person who formulates the requirements for the DCS will need to do so in the
knowledgebase's terminology. The degree to which this can be made to match the typical
user's terminology remains a research area.

Huang (2003) implemented a prototype of the UniFrame System Generation Process with
the UniFrame Resource Discovery Service. Because of the labor involved in constructing
the knowledgebase, it was limited to a small banking case study. Experimental studies

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
Permission of Idea Group Inc. is prohibited.

84 Olson, Raje, Bryant, Burt and Auguston

proved efficient, user communication issues were easily managed, and QoS values were
calculated. The automated creation of bridges and glue/wrapper code and using FORMAN
to insert the code into them for the QoS computations remain to be incorporated into the
implementation.

Conclusion

This chapter has described the UniFrame process for constructing distributed comput-
ing systems and has shown how it facilitates achieving the current goals of government
and industry in rapidly creating high quality computing systems. UniFrame provides a
framework within which a diverse array of technologies can be brought to achieve these
ends. These include software engineering practices, such as rapid, iterative, and
incremental development. Its business line, service-oriented, model-driven architecture
based on components is a realization of the movement to provide mutability, quick
development, and conservation of resources. A knowledgebase of component-based,
predefined and tested designs for distributed computing systems, event traces for
empirical testing, and quality ofservice prediction and calculation are tools it utilizes for
increasing quality assurance. UniFrame decouples the requirements analysis and system
assembly activities from the problem of collecting appropriate components published on
the network. Its novel resource discovery service facilitates the efficient acquisition of
components meeting stated specifications. It provides a mechanism for seamlessly
bridging components of different models, such as RMI and CORBA, to support the
construction of heterogeneous, distributed computing systems having platform-inde-
pendent definitions. The UniFrame project is also investigating techniques and patterns
related to using quality of service parameters during the design of components and
integrated systems to create high assurance distributed computing systems.

Acknowledgments

This work was supported in part by the U.S. Office of Naval Research, grant NOOO 14-01 -
1-0746.

References

Auguston, M. (1995). Program behavior model based on event grammar and its
application for debugging automaton. In M. Ducassd (Ed.), Proceedings of the
2nd International Workshop on Automated and Algorithmic Debugging
(AADEBUG'95) (pp. 277-29 1), Rennes: Universit6 de Rennes.

Copyright 0 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc- is prohibited.

0
UniFrame 85

Batory, D., & Geraci, B. (1997). Component validation and subjectivity in GenVoca
generators. IEEE Transactions on Software Engineering, 23(2), 67-82.

Beugnard, A., Jezequel, J., Plouzeau, N., & Watkins, D. (1999). Making components
contract aware. IEEE Computer, 32(7), 38-45.

Brahnmath, G. (2002). The UniFrame Quality of Service Framework. Unpublished
master's thesis, Indiana University Purdue University, Indianapolis, IN, United
States. Retrieved August 8, 2004: http://www.cs.iupui.edu/uniFrame/

Brown, A. (1999). Building systems from pieces with component-based software engi-
neering. In P. Clements (Ed.), Constructing superior software (Chapter 6). India-
napolis, IN: MacMillan Technical.

Bryant, B. R., Auguston, M., Raje, R. R., Burt, C. C., & Olson, A. M. (2002). Formal
specification of generative component assembly using two-level grammar. Pro-
ceedings of SEKE 2002, 14th International Conference on Software Engineering
and Knowledge Engineering (pp. 209-212). Los A lamitos: IEEE Press.

Bryant, B. R., & Lee, B.-S. (2002). Two-Level grammar as an object-oriented require-
ments specification language. Proceedings of HICSS-35, the 35th Hawaii Interna-
tional Conference on System Sciences (p. 280). Los Alamitos, CA: IEEE Press.
Retrieved August 8,2004: http://www.hicss.hawaii.edu/HICSS_35/HICSSpapers/
PDFdocuments/STDSLOl.pdf

Cmkovic, I., Schmidt, H., Stafford, J., & Wallnau, K. (Eds.). (2003). Proceedings of the
6th Workshop on Component-Based Software Engineering: Automated Reason-
ing and Prediction. The 2 5't International Conference on Software Engineering
(ICSE). Retrieved August 8,2004: http://www.csse.monash.edu. au/-hws/cgi-bin/
CBSE6

Enterprise Architecture SIG, Industrial Advisor Council (IAC). (2003a, March). Business
line architecture and integration. Retrieved August 8,2004: http://216.219.201.97/
documentspresentations/index. htm

Enterprise Architecture SIG, Industrial Advisor Council. (2003b, March). (IAC). Suc-
ceeding with component-based architecture in e-government. Retrieved August 8,
2004: http://216.219.201.97/documentspresentations/index. htm

Fritzson, P., Auguston, M., & Shahmehri, N. (1994). Using assertions in declarative and
operational models for automated debugging. The Journal of Systems and Soft-
ware, 25, 223-239.

Griss, M. L. (2001). Product line architectures. In G. T. Heineman, & W. T. Councill (Eds.),
Component-based software engineering: Putting the pieces together (pp. 405-
420). Boston: Addison-Wesley.

Heineman, G. T., & Councill, W. T. (Eds.). (2001). Component-basedsoftware engineer-
ing: Putting the pieces together. Boston: Addison-Wesley.

Huang, Z. (2003). The UniFrame system-level generative programming framework.
Unpublished master's thesis, Indiana University Purdue University, Indianapolis,
IN, Un ited States. Retrieved August 8, 2004: http://www. cs. iupui. edu/uniFrame

Java Remote Method Invocation - Distributed computing for Java. (2003, October 2).
Retrieved August 8,2004: http://java.sun.com/marketing/collateral/javarmi.html

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

86 Olson, Raje, Bryant, Burt and Auguston

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.
Communications of the A CM, 21(7), 558-565.

Lumpe, M., Schneider, J., Nierstrasz, O., & Achermann, F. (1997). Towards aformal
composition language. In G. T. Leavens & M. Sitamaran (Eds.), Proceedings of the
I st ESEC Workshop on Foundations of Component-Based Systems (pp. 178-187).
Heidelberg: Springer-Verlag.

Microsoft .Net Framework: Technology overview. (2003, October 2). Retrieved August
8, 2004: http://msdn.microsoft. com/netframework/technologyinfo/overview/

Object Management Group. Model-Driven ArchitectureTM, the architecture of choice for
a changing world. (2002, March 12). Retrieved August 8,2004: http://www.omg.org!
mda

Raje, R. (2000). UMM: UnifiedMeta-object Modelfor open distributedsystems. Proceed-
ings of the Fourth IEEE International Conference on Algorithms and Architecture
for Parallel Processing (ICA3PP 2000)(pp. 454-465). Los Alamitos, CA: IEEE Press.

Raje, R., Auguston, M., Bryant, B., Olson, A., & Burt, C. (2001). A unified approachfor
integration of distributed heterogeneous software components. Proceedings of
the Monterey Workshop on Engineering Automation for Software Intensive
System Integration, SEAC technical report (pp. 109-119). Monterey, CA: U.S.
Naval Postgraduate School. Retrieved August 8, 2004: http://www.cs.iupui.edu/
uniFrame!

Raje, R., Bryant, B., Olson, A., Auguston, M., & Burt, C. (2002). A quality-of-service-
based framework for creating distributed heterogeneous software components.
Concurrency and Computation: Practice and Experience, 14, 1009-1034.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The Unified Modeling Language
reference manual. Reading, MA: Addison Wesley.

Schmidt, D. (2003, October 2). Overview of CORBA. Retrieved August 8, 2004: http://
www. cs. wustl, edu/-schmidt/corba-overview. html

Siram, N., Raje, R., Olson, A., Bryant, B., Burt, C., & Auguston, M. (2002). An architecture
for the UniFrame Resource Discovery Service. Proceedings of the 3rd Interna-
tional Workshop of Software Engineering and Middleware: Vol. 2596. Lecture

Notes in Computer Science (pp. 20-35). Heidelberg: Springer-Verlag.

Sun, C. (2003). QoS composition anddecomposition models in UniFrame. Unpublished
master's thesis, Indiana University Purdue University, Indianapolis, IN, United
States. Retrieved August 8, 2004: www.cs.iupui.edu/uniFrame

Szyperski, C., Gruntz, D., & Murer, S. (2002). Component software - Beyond object-
oriented programming. (2nd ed.). Boston: Addison-Wesley/ACM Press.

Warmer, J., & Kleppe, A. (2003). The Object Constraint Language. (2nd ed.). Boston:
Addison-Wesley.

Weck, W. (1997, June). Independently extensible component frameworks. In M.
Muhlhauser (Ed.), Proceedings ofthe 1st International Workshop on Component-

Copyright © 2005. Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UniFrame 87

Oriented Programming (European Conference on Object-Oriented Program-
ming, Jyvaskyla, Finland), Special Issues in Object-Oriented Programming (pp.

177-188). Heidelberg: Springer-Verlag.

0

Copyright 0 2005, Idea Group Inc- Copying or distributing in print or electronic forms without written
Permission of Idea Group Inc- is prohibited.

